630 research outputs found

    Robotic manipulators for single access surgery

    Get PDF
    This thesis explores the development of cooperative robotic manipulators for enhancing surgical precision and patient outcomes in single-access surgery and, specifically, Transanal Endoscopic Microsurgery (TEM). During these procedures, surgeons manipulate a heavy set of instruments via a mechanical clamp inserted in the patient’s body through a surgical port, resulting in imprecise movements, increased patient risks, and increased operating time. Therefore, an articulated robotic manipulator with passive joints is initially introduced, featuring built-in position and force sensors in each joint and electronic joint brakes for instant lock/release capability. The articulated manipulator concept is further improved with motorised joints, evolving into an active tool holder. The joints allow the incorporation of advanced robotic capabilities such as ultra-lightweight gravity compensation and hands-on kinematic reconfiguration, which can optimise the placement of the tool holder in the operating theatre. Due to the enhanced sensing capabilities, the application of the active robotic manipulator was further explored in conjunction with advanced image guidance approaches such as endomicroscopy. Recent advances in probe-based optical imaging such as confocal endomicroscopy is making inroads in clinical uses. However, the challenging manipulation of imaging probes hinders their practical adoption. Therefore, a combination of the fully cooperative robotic manipulator with a high-speed scanning endomicroscopy instrument is presented, simplifying the incorporation of optical biopsy techniques in routine surgical workflows. Finally, another embodiment of a cooperative robotic manipulator is presented as an input interface to control a highly-articulated robotic instrument for TEM. This master-slave interface alleviates the drawbacks of traditional master-slave devices, e.g., using clutching mechanics to compensate for the mismatch between slave and master workspaces, and the lack of intuitive manipulation feedback, e.g. joint limits, to the user. To address those drawbacks a joint-space robotic manipulator is proposed emulating the kinematic structure of the flexible robotic instrument under control.Open Acces

    Computational Geometry in Medical Applications

    Get PDF

    Robotic Rehabilitation System In Malaysia

    Get PDF
    The goal of this project entitled Robotic Rehabititation System in Malaysia is to examine the purpose of robotics to therapeutic procedures for achieving the finest possible motor and functional recovery for persons with impairments following various diseases such as amputations, life-threatening wounds, brain injury, pain management issues, orthopaedics, pulmonary, spinal cord injuries and strokes. Feasibility study and research concerning robotic rehabilitation system iue prepared for the development of robotic based rehabilitation system in Malaysia to be fulfilled. However, there are significant research challenges in developing and testing rehabilitation robots so that they meet the requirements of the patients. The technology must be capable of improving person's impaired limbs or part of the body. In addition, robots must be able to understand the complexity of human type of movements. Thus, non-robotic rehabilitation centre can be transformed to a robotic based rehabilitation centre by analysing the possibility of transforming the current practice of rehabilitation programs conducted via physiotherapist to an automated rehabilitation activity by means of robot follows with good evidence on how robots might enhance the delivery of robotic rehabilitation to people of all ages

    Optimal Port Placement And Automated Robotic Positioning For Instrumented Laparoscopic Biosensors

    Get PDF
    OPTIMAL SURGICAL PORT PLACEMENT AND AUTOMATED ROBOTIC POSITIONING FOR RAMAN AND OTHER BIOSENSORS by BRADY KING January 2011 Advisors: Dr. Abhilash Pandya, Dr. Darin Ellis, Dr. Le Yi Wang, and Dr. Greg Auner Major: Computer Engineering Degree: Doctor of Philosophy Medical biosensors can provide new information during minimally invasive and robotic surgical procedures. However, these biosensors have significant physical limitations that make it difficult to find optimal port locations and place them in vivo. This dissertation explores the application of robotics and virtual/augmented reality to biosensors to enable their optimal use in vivo. In the first study, human performance in the task of port placement was evaluated to determine if computer intervention and assistance was needed. Using a virtual surgical environment, we present a number of targets on one or more tissue surfaces. A human factors study was conducted with 20 subjects that analyzed the subject\u27s placement of a port with the goal of scanning as many targets as possible with a biosensor. The study showed performance to be less than optimal with significant degradation in several specific scenarios. In the second study, an automated intelligent port placement system for biosensor use was developed. Patient data was displayed in an environment in which a surgeon could indicate areas of interest. The system utilized biosensor physical limitations and provided the best port location from which the biosensor could reach the targets on a collision-free path. The study showed that it is possible to find an optimal port location for proper biosensor data capture. In the final study, a surgical robot was investigated for potential use in holding and positioning a biosensor in vivo. A full control suite was developed for an AESOP 1000, enabling the positioning of the biosensor without hand manipulation. It was found that the robot lacks the accuracy needed for proper biosensor utilization. Specific causes for the inaccuracies were identified for analysis and consideration in future robotic platforms. Overall, the results show that the application of medical robotics and virtual/augmented reality is able to overcome of the significant physical limitations inherent to biosensor design that currently limit their use in surgery. We conjecture that a complete system, with a more accurate robot, could be used in vivo. We believe that results taken from the individual studies will result in improvements to pre-operative port placement and robotic design

    Bridging the gap between robotic technology and health care

    Get PDF
    Although technology and computation power have become more and more present in our daily lives, we have yet to see the same tendency in robotics applied to health care. In this work we focused on the study of four distinct applications of robotic technology to health care, named Robotic Assisted Surgery, Robotics in Rehabilitation, Prosthetics and Companion Robotic Systems. We identified the main roadblocks that are limiting the progress of such applications by an extensive examination of recent reports. Based on the limitations of the practical use of current robotic technology for health care we proposed a general modularization approach for the conception and implementation of specific robotic devices. The main conclusions of this review are: (i) there is a clear need of the adaptation of robotic technology (closed loop) to the user, so that robotics can be widely accepted and used in the context of heath care; (ii) for all studied robotic technologies cost is still prohibitive and limits their wide use. The reduction of costs influences technology acceptability; thus innovation by using cheaper computer systems and sensors is relevant and should be taken into account in the implementation of robotic systems
    • …
    corecore