4 research outputs found

    Single carrier frequency domain equalization and energy efficiency optimization for MIMO cognitive radio.

    Get PDF
    This dissertation studies two separate topics in wireless communication systems. One topic focuses on the Single Carrier Frequency Domain Equalization (SC-FDE), which is a promising technique to mitigate the multipath effect in the broadband wireless communication. Another topic targets on the energy efficiency optimization in a multiple input multiple output (MIMO) cognitive radio network. For SC-FDE, the conventional linear receivers suffer from the noise amplification in deep fading channel. To overcome this, a fractional spaced frequency domain (FSFD) receiver based on frequency domain oversampling (FDO) is proposed for SC-FDE to improve the performance of the linear receiver under deep fading channels. By properly designing the guard interval, a larger sized Discrete Fourier Transform (DFT) is equipped to oversample the received signal in frequency domain. Thus, the effect of frequency-selective fading can still be eliminated by a one-tap frequency domain filter. Two types of FSFD receivers are proposed based on the least square (LS) and minimum mean square error (MMSE) criterion. Both the semi-analytical analysis and simulation results are given to evaluate the performance of the proposed receivers. Another challenge in SC-FDE is the in-phase/quadrature phase (IQ) imbalance caused by unideal radio frequency (RF) front-end at the transmitter or the receiver. Most existing works in single carrier transmission employ linear compensation methods, such as LS and MMSE, to combat the interference caused by IQ imbalance. Actually, for single carrier transmissions, it is possible for the receivers to adopt advanced nonlinear compensation methods to improve the system performance under IQ imbalance. For such purpose, an iterative decision feedback receiver is proposed to compensate the IQ imbalance caused by unideal RF front-end in SC-FDE. Numerical results show that the proposed iterative IQ imbalance compensation can significantly improve the performance of SC-FDE system under IQ imbalance compared with the conventional linear method. For the energy efficiency optimization in the MIMO cognitive radio network, multiple secondary users (SUs) coexisting with a primary user (PU) adjust their antenna radiation patterns and power allocations to achieve energy-efficient transmission. The optimization problems are formulated to maximize the energy efficiency of a cognitive radio network in both distributed and centralized point of views. Also, constraints on the transmission power and the interference to PU are introduced to protect the PU’s transmission. In order to solve the non-convex optimization problems, convex relaxations are used to transform them into equivalent problems with better tractability. Then three optimization algorithms are proposed to find the energy-efficient transmission strategies. Simulation results show that the proposed energy-efficiency optimization algorithms outperform the existing algorithms

    Networked Control System Design and Parameter Estimation

    Get PDF
    Networked control systems (NCSs) are a kind of distributed control systems in which the data between control components are exchanged via communication networks. Because of the attractive advantages of NCSs such as reduced system wiring, low weight, and ease of system diagnosis and maintenance, the research on NCSs has received much attention in recent years. The first part (Chapter 2 - Chapter 4) of the thesis is devoted to designing new controllers for NCSs by incorporating the network-induced delays. The thesis also conducts research on filtering of multirate systems and identification of Hammerstein systems in the second part (Chapter 5 - Chapter 6). Network-induced delays exist in both sensor-to-controller (S-C) and controller-to-actuator (C-A) links. A novel two-mode-dependent control scheme is proposed, in which the to-be-designed controller depends on both S-C and C-A delays. The resulting closed-loop system is a special jump linear system. Then, the conditions for stochastic stability are obtained in terms of a set of linear matrix inequalities (LMIs) with nonconvex constraints, which can be efficiently solved by a sequential LMI optimization algorithm. Further, the control synthesis problem for the NCSs is considered. The definitions of H₂ and H∞ norms for the special system are first proposed. Also, the plant uncertainties are considered in the design. Finally, the robust mixed H₂/H∞ control problem is solved under the framework of LMIs. To compensate for both S-C and C-A delays modeled by Markov chains, the generalized predictive control method is modified to choose certain predicted future control signal as the current control effort on the actuator node, whenever the control signal is delayed. Further, stability criteria in terms of LMIs are provided to check the system stability. The proposed method is also tested on an experimental hydraulic position control system. Multirate systems exist in many practical applications where different sampling rates co-exist in the same system. The l₂-l∞ filtering problem for multirate systems is considered in the thesis. By using the lifting technique, the system is first transformed to a linear time-invariant one, and then the filter design is formulated as an optimization problem which can be solved by using LMI techniques. Hammerstein model consists of a static nonlinear block followed in series by a linear dynamic system, which can find many applications in different areas. New switching sequences to handle the two-segment nonlinearities are proposed in this thesis. This leads to less parameters to be estimated and thus reduces the computational cost. Further, a stochastic gradient algorithm based on the idea of replacing the unmeasurable terms with their estimates is developed to identify the Hammerstein model with two-segment nonlinearities. Finally, several open problems are listed as the future research directions

    A Hammerstein-Type Equalizer for Concatenated Fiber-Wireless Uplink

    No full text
    corecore