667 research outputs found

    On local and global aspects of the 1:4 resonance in the conservative cubic H\'enon maps

    Get PDF
    We study the 1:4 resonance for the conservative cubic H\'enon maps C±\mathbf{C}_\pm with positive and negative cubic term. These maps show up different bifurcation structures both for fixed points with eigenvalues ±i\pm i and for 4-periodic orbits. While for C−\mathbf{C}_- the 1:4 resonance unfolding has the so-called Arnold degeneracy (the first Birkhoff twist coefficient equals (in absolute value) to the first resonant term coefficient), the map C+\mathbf{C}_+ has a different type of degeneracy because the resonant term can vanish. In the last case, non-symmetric points are created and destroyed at pitchfork bifurcations and, as a result of global bifurcations, the 1:4 resonant chain of islands rotates by π/4\pi/4. For both maps several bifurcations are detected and illustrated.Comment: 21 pages, 13 figure

    Evolution of the L1 halo family in the radial solar sail CRTBP

    Get PDF
    We present a detailed investigation of the dramatic changes that occur in the L1\mathcal{L}_1 halo family when radiation pressure is introduced into the Sun-Earth circular restricted three-body problem (CRTBP). This photo-gravitational CRTBP can be used to model the motion of a solar sail orientated perpendicular to the Sun-line. The problem is then parameterized by the sail lightness number, the ratio of solar radiation pressure acceleration to solar gravitational acceleration. Using boundary-value problem numerical continuation methods and the AUTO software package (Doedel et al. 1991) the families can be fully mapped out as the parameter β\beta is increased. Interestingly, the emergence of a branch point in the retrograde satellite family around the Earth at β≈0.0387\beta\approx0.0387 acts to split the halo family into two new families. As radiation pressure is further increased one of these new families subsequently merges with another non-planar family at β≈0.289\beta\approx0.289, resulting in a third new family. The linear stability of the families changes rapidly at low values of β\beta, with several small regions of neutral stability appearing and disappearing. By using existing methods within AUTO to continue branch points and period-doubling bifurcations, and deriving a new boundary-value problem formulation to continue the folds and Krein collisions, we track bifurcations and changes in the linear stability of the families in the parameter β\beta and provide a comprehensive overview of the halo family in the presence of radiation pressure. The results demonstrate that even at small values of β\beta there is significant difference to the classical CRTBP, providing opportunity for novel solar sail trajectories. Further, we also find that the branch points between families in the solar sail CRTBP provide a simple means of generating certain families in the classical case.Comment: 31 pages, 17 figures, accepted by Celestial Mechanics and Dynamical Astronom

    Uniform approximations for non-generic bifurcation scenatios including bifurcations of ghost orbits

    Full text link
    Gutzwiller's trace formula allows interpreting the density of states of a classically chaotic quantum system in terms of classical periodic orbits. It diverges when periodic orbits undergo bifurcations, and must be replaced with a uniform approximation in the vicinity of the bifurcations. As a characteristic feature, these approximations require the inclusion of complex ``ghost orbits''. By studying an example taken from the Diamagnetic Kepler Problem, viz. the period-quadrupling of the balloon-orbit, we demonstrate that these ghost orbits themselves can undergo bifurcations, giving rise to non-generic complicated bifurcation scenarios. We extend classical normal form theory so as to yield analytic descriptions of both bifurcations of real orbits and ghost orbit bifurcations. We then show how the normal form serves to obtain a uniform approximation taking the ghost orbit bifurcation into account. We find that the ghost bifurcation produces signatures in the semiclassical spectrum in much the same way as a bifurcation of real orbits does.Comment: 56 pages, 21 figure, LaTeX2e using amsmath, amssymb, epsfig, and rotating packages. To be published in Annals of Physic

    Significance of Ghost Orbit Bifurcations in Semiclassical Spectra

    Full text link
    Gutzwiller's trace formula for the semiclassical density of states in a chaotic system diverges near bifurcations of periodic orbits, where it must be replaced with uniform approximations. It is well known that, when applying these approximations, complex predecessors of orbits created in the bifurcation ("ghost orbits") can produce pronounced signatures in the semiclassical spectra in the vicinity of the bifurcation. It is the purpose of this paper to demonstrate that these ghost orbits themselves can undergo bifurcations, resulting in complex, nongeneric bifurcation scenarios. We do so by studying an example taken from the Diamagnetic Kepler Problem, viz. the period quadrupling of the balloon orbit. By application of normal form theory we construct an analytic description of the complete bifurcation scenario, which is then used to calculate the pertinent uniform approximation. The ghost orbit bifurcation turns out to produce signatures in the semiclassical spectrum in much the same way as a bifurcation of real orbits would.Comment: 20 pages, 6 figures, LATEX (IOP style), submitted to J. Phys.

    A Hopf variables view on the libration points dynamics

    Full text link
    The dynamics about the libration points of the Hill problem is investigated analytically. In particular, the use of Lissajous variables and perturbation theory allows to reduce the problem to a one degree of freedom Hamiltonian depending on two physical parameters. The invariant manifolds structure of the Hill problem is then disclosed, yet accurate computations are limited to energy values close to that of the libration points

    The theory of secondary resonances in the spin-orbit problem

    Full text link
    We study the resonant dynamics in a simple one degree of freedom, time dependent Hamiltonian model describing spin-orbit interactions. The equations of motion admit periodic solutions associated with resonant motions, the most important being the synchronous one in which most evolved satellites of the Solar system, including the Moon, are observed. Such primary resonances can be surrounded by a chain of smaller islands which one refers to as secondary resonances. Here, we propose a novel canonical normalization procedure allowing to obtain a higher order normal form, by which we obtain analytical results on the stability of the primary resonances as well as on the bifurcation thresholds of the secondary resonances. The procedure makes use of the expansion in a parameter, called the detuning, measuring the shift from the exact secondary resonance. Also, we implement the so-called `book-keeping' method, i.e., the introduction of a suitable separation of the terms in orders of smallness in the normal form construction, which deals simultaneously with all the small parameters of the problem. Our analytical computation of the bifurcation curves is in excellent agreement with the results obtained by a numerical integration of the equations of motion, thus providing relevant information on the parameter regions where satellites can be found in a stable configuration.Comment: Accepted for publication in MNRA

    Uniform approximations for pitchfork bifurcation sequences

    Get PDF
    In non-integrable Hamiltonian systems with mixed phase space and discrete symmetries, sequences of pitchfork bifurcations of periodic orbits pave the way from integrability to chaos. In extending the semiclassical trace formula for the spectral density, we develop a uniform approximation for the combined contribution of pitchfork bifurcation pairs. For a two-dimensional double-well potential and the familiar H\'enon-Heiles potential, we obtain very good agreement with exact quantum-mechanical calculations. We also consider the integrable limit of the scenario which corresponds to the bifurcation of a torus from an isolated periodic orbit. For the separable version of the H\'enon-Heiles system we give an analytical uniform trace formula, which also yields the correct harmonic-oscillator SU(2) limit at low energies, and obtain excellent agreement with the slightly coarse-grained quantum-mechanical density of states.Comment: LaTeX, 31 pp., 18 figs. Version (v3): correction of several misprint
    • …
    corecore