10 research outputs found

    Machine Learning Guided Discovery and Design for Inertial Confinement Fusion

    Get PDF
    Inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) and their corresponding computer simulations produce an immense amount of rich data. However, quantitatively interpreting that data remains a grand challenge. Design spaces are vast, data volumes are large, and the relationship between models and experiments may be uncertain. We propose using machine learning to aid in the design and understanding of ICF implosions by integrating simulation and experimental data into a common frame-work. We begin by illustrating an early success of this data-driven design approach which resulted in the discovery of a new class of high performing ovoid-shaped implosion simulations. The ovoids achieve robust performance from the generation of zonal flows within the hotspot, revealing physics that had not previously been observed in ICF capsules. The ovoid discovery also revealed deficiencies in common machine learning algorithms for modeling ICF data. To overcome these inadequacies, we developed a novel algorithm, deep jointly-informed neural networks (DJINN), which enables non-data scientists to quickly train neural networks on their own datasets. DJINN is routinely used for modeling data ICF data and for a variety of other applications (uncertainty quantification; climate, nuclear, and atomic physics data). We demonstrate how DJINN is used to perform parameter inference tasks for NIF data, and how transfer learning with DJINN enables us to create predictive models of direct drive experiments at the Omega laser facility. Much of this work focuses on scalar or modest-size vector data, however many ICF diagnostics produce a variety of images, spectra, and sequential data. We end with a brief exploration of sequence-to-sequence models for emulating time-dependent multiphysics systems of varying complexity. This is a first step toward incorporating multimodal time-dependent data into our analyses to better constrain our predictive models

    Machine Learning Guided Discovery and Design for Inertial Confinement Fusion

    Get PDF
    Inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) and their corresponding computer simulations produce an immense amount of rich data. However, quantitatively interpreting that data remains a grand challenge. Design spaces are vast, data volumes are large, and the relationship between models and experiments may be uncertain. We propose using machine learning to aid in the design and understanding of ICF implosions by integrating simulation and experimental data into a common frame-work. We begin by illustrating an early success of this data-driven design approach which resulted in the discovery of a new class of high performing ovoid-shaped implosion simulations. The ovoids achieve robust performance from the generation of zonal flows within the hotspot, revealing physics that had not previously been observed in ICF capsules. The ovoid discovery also revealed deficiencies in common machine learning algorithms for modeling ICF data. To overcome these inadequacies, we developed a novel algorithm, deep jointly-informed neural networks (DJINN), which enables non-data scientists to quickly train neural networks on their own datasets. DJINN is routinely used for modeling data ICF data and for a variety of other applications (uncertainty quantification; climate, nuclear, and atomic physics data). We demonstrate how DJINN is used to perform parameter inference tasks for NIF data, and how transfer learning with DJINN enables us to create predictive models of direct drive experiments at the Omega laser facility. Much of this work focuses on scalar or modest-size vector data, however many ICF diagnostics produce a variety of images, spectra, and sequential data. We end with a brief exploration of sequence-to-sequence models for emulating time-dependent multiphysics systems of varying complexity. This is a first step toward incorporating multimodal time-dependent data into our analyses to better constrain our predictive models

    Ultrafast Radiographic Imaging and Tracking: An overview of instruments, methods, data, and applications

    Full text link
    Ultrafast radiographic imaging and tracking (U-RadIT) use state-of-the-art ionizing particle and light sources to experimentally study sub-nanosecond dynamic processes in physics, chemistry, biology, geology, materials science and other fields. These processes, fundamental to nuclear fusion energy, advanced manufacturing, green transportation and others, often involve one mole or more atoms, and thus are challenging to compute by using the first principles of quantum physics or other forward models. One of the central problems in U-RadIT is to optimize information yield through, e.g. high-luminosity X-ray and particle sources, efficient imaging and tracking detectors, novel methods to collect data, and large-bandwidth online and offline data processing, regulated by the underlying physics, statistics, and computing power. We review and highlight recent progress in: a.) Detectors; b.) U-RadIT modalities; c.) Data and algorithms; and d.) Applications. Hardware-centric approaches to U-RadIT optimization are constrained by detector material properties, low signal-to-noise ratio, high cost and long development cycles of critical hardware components such as ASICs. Interpretation of experimental data, including comparisons with forward models, is frequently hindered by sparse measurements, model and measurement uncertainties, and noise. Alternatively, U-RadIT makes increasing use of data science and machine learning algorithms, including experimental implementations of compressed sensing. Machine learning and artificial intelligence approaches, refined by physics and materials information, may also contribute significantly to data interpretation, uncertainty quantification and U-RadIT optimization.Comment: 51 pages, 31 figures; Overview of ultrafast radiographic imaging and tracking as a part of ULITIMA 2023 conference, Mar. 13-16,2023, Menlo Park, CA, US

    The Challenges of In Situ Analysis for Multiple Simulations

    Get PDF
    International audienceIn situ analysis and visualization have mainly been applied to the output of a single large-scale simulation. However, topics involving the execution of multiple simulations in supercomputers have only received minimal attention so far. Some important examples are uncertainty quantification, data assimilation, and complex optimization. In this position article, beyond highlighting the strengths and limitations of the tools that we have developed over the past few years, we share lessons learned from using them on large-scale platforms and from interacting with end users. We then discuss the forthcoming challenges, which future in situ analysis and vi-sualization frameworks will face when dealing with the exascale execution of multiple simulations

    2022 Review of Data-Driven Plasma Science

    Get PDF
    Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required

    Laboratory Directed Research and Development FY2010 Annual Report

    Full text link
    corecore