568 research outputs found

    Move Acceptance in Local Search Metaheuristics for Cross-domain Heuristic Search

    Get PDF
    Many real-world combinatorial optimisation problems (COPs) are computationally hard problems and search methods are frequently preferred as solution techniques. Traditionally, an expert with domain knowledge designs, and tailors the search method for solving a particular COP. This process is usually expensive, requiring a lot of effort and time and often results in problem specific algorithms that can not be applied to another COP. Then, the domain expert either needs to design a new search method, or reconfigure an existing search method to solve that COP. This prompted interest into developing more general, problem-domain-independent high-level search methods that can be re-used, capable of solving not just a single problem but multiple COPs. The cross-domain search problem is a relatively new concept and represents a high-level issue that involves designing a single solution method for solving a multitude of COPs preferably with the least or no expert intervention. Cross-domain search methods are algorithms designed to tackle the cross-domain search problem. Such methods are of interest to researchers and practitioners worldwide as they offer a single off-the-shelf go-to approach to problem solving. Furthermore, if a cross-domain search method has a good performance, then it can be expected to solve `any' given COP well and in a reasonable time frame. When a practitioner is tasked with solving a new or unknown COP, they are tasked with a decision-making dilemma. This entails the decision of what algorithm they should use, what parameters should be used for that algorithm, and whether any other algorithm can outperform it. A well designed cross-domain search method that performs well and does not require re-tuning can fulfil this dilemma allowing practitioners to find good-enough solutions to such problems. Researchers on the other hand strive to find high-quality solutions to these problems; however, such a cross-domain search method provides them with a good benchmark to which they can compare their solution methods to, and should ultimately aim to outperform. In this work, move acceptance methods, which are a component of traditional search methods, such as metaheuristics and hyper-heuristics, are explored under a cross-domain search framework. A survey of the existing move acceptance methods as a part of local search metaheuristics is conducted based on the hyper-heuristic literature as solution methods to the cross-domain search problem. Furthermore, a taxonomy is provided for classifying them based on their design characteristics. The cross-domain performance of existing move acceptance methods, covering the taxonomy, is compared across a total of 45 problem instances spanning 9 problem domains, and the effects of parameter tuning versus choice of the move acceptance method are explored. A novel move acceptance method (HAMSTA) is proposed to overcome the shortcomings of the existing methods to improve the cross-domain performance of a local search metaheuristic. HAMSTA is capable of outperforming the cross-domain performances of existing methods that are re-tuned for each domain, despite itself using only a single cross-domain parameter configuration derived from tuning experiments that considers 2 instances each from 4 domains; hence, HAMSTA requires no expert intervention to re-configure it to perform well for solving multiple COPs with 37 problem instances unseen by HAMSTA, 25 of which are from unseen domains. HAMSTA is therefore shown to have the potential to fulfil the aforementioned decision-making dilemma

    Move Acceptance in Local Search Metaheuristics for Cross-domain Heuristic Search

    Get PDF
    Many real-world combinatorial optimisation problems (COPs) are computationally hard problems and search methods are frequently preferred as solution techniques. Traditionally, an expert with domain knowledge designs, and tailors the search method for solving a particular COP. This process is usually expensive, requiring a lot of effort and time and often results in problem specific algorithms that can not be applied to another COP. Then, the domain expert either needs to design a new search method, or reconfigure an existing search method to solve that COP. This prompted interest into developing more general, problem-domain-independent high-level search methods that can be re-used, capable of solving not just a single problem but multiple COPs. The cross-domain search problem is a relatively new concept and represents a high-level issue that involves designing a single solution method for solving a multitude of COPs preferably with the least or no expert intervention. Cross-domain search methods are algorithms designed to tackle the cross-domain search problem. Such methods are of interest to researchers and practitioners worldwide as they offer a single off-the-shelf go-to approach to problem solving. Furthermore, if a cross-domain search method has a good performance, then it can be expected to solve `any' given COP well and in a reasonable time frame. When a practitioner is tasked with solving a new or unknown COP, they are tasked with a decision-making dilemma. This entails the decision of what algorithm they should use, what parameters should be used for that algorithm, and whether any other algorithm can outperform it. A well designed cross-domain search method that performs well and does not require re-tuning can fulfil this dilemma allowing practitioners to find good-enough solutions to such problems. Researchers on the other hand strive to find high-quality solutions to these problems; however, such a cross-domain search method provides them with a good benchmark to which they can compare their solution methods to, and should ultimately aim to outperform. In this work, move acceptance methods, which are a component of traditional search methods, such as metaheuristics and hyper-heuristics, are explored under a cross-domain search framework. A survey of the existing move acceptance methods as a part of local search metaheuristics is conducted based on the hyper-heuristic literature as solution methods to the cross-domain search problem. Furthermore, a taxonomy is provided for classifying them based on their design characteristics. The cross-domain performance of existing move acceptance methods, covering the taxonomy, is compared across a total of 45 problem instances spanning 9 problem domains, and the effects of parameter tuning versus choice of the move acceptance method are explored. A novel move acceptance method (HAMSTA) is proposed to overcome the shortcomings of the existing methods to improve the cross-domain performance of a local search metaheuristic. HAMSTA is capable of outperforming the cross-domain performances of existing methods that are re-tuned for each domain, despite itself using only a single cross-domain parameter configuration derived from tuning experiments that considers 2 instances each from 4 domains; hence, HAMSTA requires no expert intervention to re-configure it to perform well for solving multiple COPs with 37 problem instances unseen by HAMSTA, 25 of which are from unseen domains. HAMSTA is therefore shown to have the potential to fulfil the aforementioned decision-making dilemma

    Crossover control in selection hyper-heuristics: case studies using MKP and HyFlex

    Get PDF
    Hyper-heuristics are a class of high-level search methodologies which operate over a search space of heuristics rather than a search space of solutions. Hyper-heuristic research has set out to develop methods which are more general than traditional search and optimisation techniques. In recent years, focus has shifted considerably towards cross-domain heuristic search. The intention is to develop methods which are able to deliver an acceptable level of performance over a variety of different problem domains, given a set of low-level heuristics to work with. This thesis presents a body of work investigating the use of selection hyper-heuristics in a number of different problem domains. Specifically the use of crossover operators, prevalent in many evolutionary algorithms, is explored within the context of single-point search hyper-heuristics. A number of traditional selection hyper-heuristics are applied to instances of a well-known NP-hard combinatorial optimisation problem, the multidimensional knapsack problem. This domain is chosen as a benchmark for the variety of existing problem instances and solution methods available. The results suggest that selection hyper-heuristics are a viable method to solve some instances of this problem domain. Following this, a framework is defined to describe the conceptual level at which crossover low-level heuristics are managed in single-point selection hyper-heuristics. HyFlex is an existing software framework which supports the design of heuristic search methods over multiple problem domains, i.e. cross-domain optimisation. A traditional heuristic selection mechanism is modified in order to improve results in the context of cross-domain optimisation. Finally the effect of crossover use in cross-domain optimisation is explored

    Crossover control in selection hyper-heuristics: case studies using MKP and HyFlex

    Get PDF
    Hyper-heuristics are a class of high-level search methodologies which operate over a search space of heuristics rather than a search space of solutions. Hyper-heuristic research has set out to develop methods which are more general than traditional search and optimisation techniques. In recent years, focus has shifted considerably towards cross-domain heuristic search. The intention is to develop methods which are able to deliver an acceptable level of performance over a variety of different problem domains, given a set of low-level heuristics to work with. This thesis presents a body of work investigating the use of selection hyper-heuristics in a number of different problem domains. Specifically the use of crossover operators, prevalent in many evolutionary algorithms, is explored within the context of single-point search hyper-heuristics. A number of traditional selection hyper-heuristics are applied to instances of a well-known NP-hard combinatorial optimisation problem, the multidimensional knapsack problem. This domain is chosen as a benchmark for the variety of existing problem instances and solution methods available. The results suggest that selection hyper-heuristics are a viable method to solve some instances of this problem domain. Following this, a framework is defined to describe the conceptual level at which crossover low-level heuristics are managed in single-point selection hyper-heuristics. HyFlex is an existing software framework which supports the design of heuristic search methods over multiple problem domains, i.e. cross-domain optimisation. A traditional heuristic selection mechanism is modified in order to improve results in the context of cross-domain optimisation. Finally the effect of crossover use in cross-domain optimisation is explored

    Towards Next Generation Sequential and Parallel SAT Solvers

    Get PDF
    This thesis focuses on improving the SAT solving technology. The improvements focus on two major subjects: sequential SAT solving and parallel SAT solving. To better understand sequential SAT algorithms, the abstract reduction system Generic CDCL is introduced. With Generic CDCL, the soundness of solving techniques can be modeled. Next, the conflict driven clause learning algorithm is extended with the three techniques local look-ahead, local probing and all UIP learning that allow more global reasoning during search. These techniques improve the performance of the sequential SAT solver Riss. Then, the formula simplification techniques bounded variable addition, covered literal elimination and an advanced cardinality constraint extraction are introduced. By using these techniques, the reasoning of the overall SAT solving tool chain becomes stronger than plain resolution. When using these three techniques in the formula simplification tool Coprocessor before using Riss to solve a formula, the performance can be improved further. Due to the increasing number of cores in CPUs, the scalable parallel SAT solving approach iterative partitioning has been implemented in Pcasso for the multi-core architecture. Related work on parallel SAT solving has been studied to extract main ideas that can improve Pcasso. Besides parallel formula simplification with bounded variable elimination, the major extension is the extended clause sharing level based clause tagging, which builds the basis for conflict driven node killing. The latter allows to better identify unsatisfiable search space partitions. Another improvement is to combine scattering and look-ahead as a superior search space partitioning function. In combination with Coprocessor, the introduced extensions increase the performance of the parallel solver Pcasso. The implemented system turns out to be scalable for the multi-core architecture. Hence iterative partitioning is interesting for future parallel SAT solvers. The implemented solvers participated in international SAT competitions. In 2013 and 2014 Pcasso showed a good performance. Riss in combination with Copro- cessor won several first, second and third prices, including two Kurt-Gödel-Medals. Hence, the introduced algorithms improved modern SAT solving technology

    On our Doorstep. Simmel, Weber and the Making of Reality

    Get PDF
    Whether we like it or not whether we believe it or not 2020 will be the year that future historians will choose to mark as the advent of a new era The pandemic did not simply hit us harder than any previous crisis and God knows we had a few since the beginning of the XXI century It left us disoriented and stranded orphans of too many promises and proclamations while showing us mercilessly the limits of our knowledge and the extent of our hybris a mixture of inebriation and arrogance often found in Greek myths where it leads heroes such as Icarus to ruin The most powerful technology put to shame by an invisible what Thing Living being We just don t know four words that we d better keep in mind while reading the following pages The virus hasn t fit within our worldview right from the start and still there it is paralyzing global economies and exposing the flaws and shortcomings of the neoliberal ideology It makes it clear that no one survives on his her own that free markets bring forth indecent inequalities and scientists hold no definite truth but argue and squabble about numbers and theorie

    Rational Patient Apathy

    Get PDF

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)
    • 

    corecore