77 research outputs found

    Penetration effect of connected and automated vehicles on cooperative on‐ramp merging

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166263/1/itr2bf00795.pd

    Coordination and Analysis of Connected and Autonomous Vehicles in Freeway On-Ramp Merging Areas

    Get PDF
    Freeway on-ramps are typical bottlenecks in the freeway network, where the merging maneuvers of ramp vehicles impose frequent disturbances on the traffic flow and cause negative impacts on traffic safety and efficiency. The emerging Connected and Autonomous Vehicles (CAVs) hold the potential for regulating the behaviors of each individual vehicle and are expected to substantially improve the traffic operation at freeway on-ramps. The aim of this research is to explore the possibilities of optimally facilitating freeway on-ramp merging operation through the coordination of CAVs, and to discuss the impacts of CAVs on the traffic performance at on-ramp merging.In view of the existing research efforts and gaps in the field of CAV on-ramp merging operation, a novel CAV merging coordination strategy is proposed by creating large gaps on the main road and directing the ramp vehicles into the created gaps in the form of platoon. The combination of gap creation and platoon merging jointly facilitates the mainline and ramp traffic and targets at the optimal performance at the traffic flow level. The coordination consists of three components: (1) mainline vehicles proactively decelerate to create large merging gaps; (2) ramp vehicles form platoons before entering the main road; (3) the gaps created on the main road and the platoons formed on the ramp are coordinated with each other in terms of size, speed, and arrival time. The coordination is analytically formulated as an optimization problem, incorporating the macroscopic and microscopic traffic flow models. The model uses traffic state parameters as inputs and determines the optimal coordination plan adaptive to real-time traffic conditions.The impacts of CAV coordination strategies on traffic efficiency are investigated through illustrative case studies conducted on microscopic traffic simulation platforms. The results show substantial improvements in merging efficiency, throughput, and traffic flow stability. In addition, the safety benefits of CAVs in the absence of specially designed cooperation strategies are investigated to reveal the CAV’s ability to eliminate critical human factors in the ramp merging process

    Reduced Fuel Emissions through Connected Vehicles and Truck Platooning

    Get PDF
    Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication enable the sharing, in real time, of vehicular locations and speeds with other vehicles, traffic signals, and traffic control centers. This shared information can help traffic to better traverse intersections, road segments, and congested neighborhoods, thereby reducing travel times, increasing driver safety, generating data for traffic planning, and reducing vehicular pollution. This study, which focuses on vehicular pollution, used an analysis of data from NREL, BTS, and the EPA to determine that the widespread use of V2V-based truck platooning—the convoying of trucks in close proximity to one another so as to reduce air drag across the convoy—could eliminate 37.9 million metric tons of CO2 emissions between 2022 and 2026
    • 

    corecore