7,493 research outputs found

    A group-theoretic approach to fast matrix multiplication

    Full text link
    We develop a new, group-theoretic approach to bounding the exponent of matrix multiplication. There are two components to this approach: (1) identifying groups G that admit a certain type of embedding of matrix multiplication into the group algebra C[G], and (2) controlling the dimensions of the irreducible representations of such groups. We present machinery and examples to support (1), including a proof that certain families of groups of order n^(2 + o(1)) support n-by-n matrix multiplication, a necessary condition for the approach to yield exponent 2. Although we cannot yet completely achieve both (1) and (2), we hope that it may be possible, and we suggest potential routes to that result using the constructions in this paper.Comment: 12 pages, 1 figure, only updates from previous version are page numbers and copyright informatio

    Which groups are amenable to proving exponent two for matrix multiplication?

    Get PDF
    The Cohn-Umans group-theoretic approach to matrix multiplication suggests embedding matrix multiplication into group algebra multiplication, and bounding Ο‰\omega in terms of the representation theory of the host group. This framework is general enough to capture the best known upper bounds on Ο‰\omega and is conjectured to be powerful enough to prove Ο‰=2\omega = 2, although finding a suitable group and constructing such an embedding has remained elusive. Recently it was shown, by a generalization of the proof of the Cap Set Conjecture, that abelian groups of bounded exponent cannot prove Ο‰=2\omega = 2 in this framework, which ruled out a family of potential constructions in the literature. In this paper we study nonabelian groups as potential hosts for an embedding. We prove two main results: (1) We show that a large class of nonabelian groups---nilpotent groups of bounded exponent satisfying a mild additional condition---cannot prove Ο‰=2\omega = 2 in this framework. We do this by showing that the shrinkage rate of powers of the augmentation ideal is similar to the shrinkage rate of the number of functions over (Z/pZ)n(\mathbb{Z}/p\mathbb{Z})^n that are degree dd polynomials; our proof technique can be seen as a generalization of the polynomial method used to resolve the Cap Set Conjecture. (2) We show that symmetric groups SnS_n cannot prove nontrivial bounds on Ο‰\omega when the embedding is via three Young subgroups---subgroups of the form Sk1Γ—Sk2Γ—β‹―Γ—Skβ„“S_{k_1} \times S_{k_2} \times \dotsb \times S_{k_\ell}---which is a natural strategy that includes all known constructions in SnS_n. By developing techniques for negative results in this paper, we hope to catalyze a fruitful interplay between the search for constructions proving bounds on Ο‰\omega and methods for ruling them out.Comment: 23 pages, 1 figur
    • …
    corecore