34,751 research outputs found

    Remote health monitoring system in a rural population: Challenges and opportunities

    Get PDF
    This paper discusses remote health monitoring as a potential application field in telecentres at rural areas. We present the challenges faced and opportunities with emphasis on patients with hypertension using a remote health monitoring system. We will also discuss the potential of deploying mHealth applications as a value added to the telecentres. The remote blood pressure health monitoring system will read, store and send data over wireless network to a remote server. Medical doctors can view the data on a regular basis remotely from a website. This community-based participatory research study carried out BP monitoring on residents from a rural village in Sarawak, Borneo and did follow-up assessments on the available health care for them. Structured quantitative and qualitative research tools were carried out on a wide range of clients – the patients, telecentre managers and medical doctors. Structured and semi-structured data collection techniques, such as questionnaires, group discussions and interviews were gathered. Observation of the whole process of interaction between the patients with the managers was also captured. The aim of the project is to determine the degree to which remote health monitoring interventions can be integrated to telecentres in rural areas to increase awareness in healthy living and wellness

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated

    Recording of time-varying back-pain data: A wireless solution

    Get PDF
    Chronic back pain is a debilitating experience for a considerable proportion of the adult population, with a significant impact on countries’ economies and health systems. While there has been increasing anecdotal evidence to support the fact that for certain categories of patients (such as wheelchair users), the back pain experienced is dynamically varying with time, there is a relative scarcity of data to support and document this observation, with consequential impact upon such patients’ treatment and care. Part of the reason behind this state of affairs is the relative difficulty in gathering pain measurements at precisely defined moments in time. In this paper,we describe a wireless-enabled solution that collects both questionnaire and diagrammatic, visual-based data, via a pain drawing, which overcomes such limitations, enabling seamless data collection and its upload to a hospital server using existing wireless fidelity technology. Results show that it is generally perceived to be an easy-to-use and convenient solution to the challenges of anywhere/anytime data collection

    Mobile Health Care over 3G Networks: the MobiHealth Pilot System and Service

    Get PDF
    Health care is one of the most prominent areas for the application of wireless technologies. New services and applications are today under research and development targeting different areas of health care, from high risk and chronic patients’ remote monitoring to mobility tools for the medical personnel. In this direction the MobiHealth project developed and trailed a system and a service that is using UMTS for the continuous monitoring and transmission of vital signals, like Pulse Oximeter sensor , temperature, Marker, Respiratory band, motion/activity detector etc., to the hospital. The system, based on the concept of the Body Area Network, is highly customisable, allowing sensors to be seamlessly connected and transmit the monitored vital signal measurements. The system and service was trialed in 4 European countries and it is presently under market validation

    How 5G wireless (and concomitant technologies) will revolutionize healthcare?

    Get PDF
    The need to have equitable access to quality healthcare is enshrined in the United Nations (UN) Sustainable Development Goals (SDGs), which defines the developmental agenda of the UN for the next 15 years. In particular, the third SDG focuses on the need to “ensure healthy lives and promote well-being for all at all ages”. In this paper, we build the case that 5G wireless technology, along with concomitant emerging technologies (such as IoT, big data, artificial intelligence and machine learning), will transform global healthcare systems in the near future. Our optimism around 5G-enabled healthcare stems from a confluence of significant technical pushes that are already at play: apart from the availability of high-throughput low-latency wireless connectivity, other significant factors include the democratization of computing through cloud computing; the democratization of Artificial Intelligence (AI) and cognitive computing (e.g., IBM Watson); and the commoditization of data through crowdsourcing and digital exhaust. These technologies together can finally crack a dysfunctional healthcare system that has largely been impervious to technological innovations. We highlight the persistent deficiencies of the current healthcare system and then demonstrate how the 5G-enabled healthcare revolution can fix these deficiencies. We also highlight open technical research challenges, and potential pitfalls, that may hinder the development of such a 5G-enabled health revolution

    MobiHealth-Innovative 2.5/3G mobile services and applications for health care

    Get PDF
    MobiHealth aims at introducing new mobile value added services in the area of healthcare, based on 2.5 (GPRS) and 3G (UMTS) technologies, thus promoting the use and deployment of GPRS and UMTS. This will be achieved by the integration of sensors and actuators to a Wireless Body Area Network (BAN). These sensors and actuators will continuously measure and transmit vital constants along with audio and video to health service providers and brokers, improving on one side the life of patients and allowing on the other side the introduction of new value-added services in the areas of disease prevention and diagnostic, remote assistance, para-health services, physical state monitoring (sports) and even clinical research. Furthermore, the MobiHealth BAN system will support the fast and reliable application of remote assistance in case of accidents by allowing the paramedics to send reliable vital constants data as well as audio and video directly from the accident site

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare
    corecore