121 research outputs found

    Mobile Computing in Physics Analysis - An Indicator for eScience

    Full text link
    This paper presents the design and implementation of a Grid-enabled physics analysis environment for handheld and other resource-limited computing devices as one example of the use of mobile devices in eScience. Handheld devices offer great potential because they provide ubiquitous access to data and round-the-clock connectivity over wireless links. Our solution aims to provide users of handheld devices the capability to launch heavy computational tasks on computational and data Grids, monitor the jobs status during execution, and retrieve results after job completion. Users carry their jobs on their handheld devices in the form of executables (and associated libraries). Users can transparently view the status of their jobs and get back their outputs without having to know where they are being executed. In this way, our system is able to act as a high-throughput computing environment where devices ranging from powerful desktop machines to small handhelds can employ the power of the Grid. The results shown in this paper are readily applicable to the wider eScience community.Comment: 8 pages, 7 figures. Presented at the 3rd Int Conf on Mobile Computing & Ubiquitous Networking (ICMU06. London October 200

    Grid enabled data analysis on handheld devices

    Get PDF
    The requirement for information on portable, handheld devices demands the realization of increasingly complex applications for increasingly small and ubiquitous devices. This trend promotes the migration of technologies that were originally developed for desktop computers to handheld devices. With the onset of grid computing, users of handheld devices should be able to accomplish much more complex tasks, by accessing the processing and storage resources of the grid. This paper describes the development, features, and performance aspects of a grid enabled analysis environment designed for handheld devices. We also describe some differences in the technologies required to run these applications on desktop machines and handheld devices. In addition, we propose a prototype agent-based distributed architecture for carrying out high-speed analysis of physics data on handheld devices

    HotGrid: Graduated Access to Grid-based Science Gateways

    Get PDF
    We describe the idea of a Science Gateway, an application-specific task wrapped as a web service, and some examples of these that are being implemented on the US TeraGrid cyberinfrastructure. We also describe HotGrid, a means of providing simple, immediate access to the Grid through one of these gateways, which we hope will broaden the use of the Grid, drawing in a wide community of users. The secondary purpose of HotGrid is to acclimate a science community to the concepts of certificate use. Our system provides these weakly authenticated users with immediate power to use the Grid resources for science, but without the dangerous power of running arbitrary code. We describe the implementation of these Science Gateways with the Clarens secure web server

    Grid enabled data analysis on handheld devices

    Get PDF
    The requirement for information on portable, handheld devices demands the realization of increasingly complex applications for increasingly small and ubiquitous devices. This trend promotes the migration of technologies that were originally developed for desktop computers to handheld devices. With the onset of grid computing, users of handheld devices should be able to accomplish much more complex tasks, by accessing the processing and storage resources of the grid. This paper describes the development, features, and performance aspects of a grid enabled analysis environment designed for handheld devices. We also describe some differences in the technologies required to run these applications on desktop machines and handheld devices. In addition, we propose a prototype agent-based distributed architecture for carrying out high-speed analysis of physics data on handheld devices

    Mobile application development exploiting science gateway technologies

    Get PDF
    Nowadays, collaborative applications are valuable tools for scientists to share their studies and experiences, for example, by interacting simultaneously with their data and outcomes giving feedback to other colleagues on how the data are processed. This paper presents a mobile application connected to a workflow-enabled framework to perform visualization and data analysis of large-scale, multi-dimensional datasets on distributed computing infrastructures. In particular, the usage of workflow-driven applications, through science gateway technologies, allows the scientist to share heavy data exploration tasks as workflows and the relative results in a transparent and user-friendly way

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems

    The Java CoG kit grid desktop : a simple and central approach to grid computing using the graphical desktop paradigm.

    Get PDF
    Grid computing is evolving as a service based, flexible and secure resource sharing environment. Currently, with the help of Grid middleware toolkits, Grids are exposing their services through programming models and command line interfaces, requiring much technical knowledge of the backend Grid systems. Grid portals also exist, but fall short on integrating with native environments and maintaining a uniform user interface from portal to portal. In order to gain wider acceptance within the large and less technical oriented user communities, we need a homogeneous graphical user environment that supports the challenging task of providing Grid users an easy to use, seamless and transparent interface requiring minimal user participation. Motivated by the needs of these users, we are presenting the Grid Desktop based on the popularity of the graphical desktop paradigms such as KDE and Windows XP. The Java CoG Kit Grid Desktop is a user centric workspace that enhances the normal operating system desktop paradigm by interlacing Grid concepts and leveraging commodity technologies like Java. The Grid Desktop contributes to the Java CoG Kit architecture and delivers ubiquitous computing through the Java CoG Kit abstractions, portability through XML and Java Web start technologies, and a simple user interface by following the vastly popular desktop patterns such as drag-n-drop

    Support for flexible and transparent distributed computing

    Get PDF
    Modern distributed computing developed from the traditional supercomputing community rooted firmly in the culture of batch management. Therefore, the field has been dominated by queuing-based resource managers and work flow based job submission environments where static resource demands needed be determined and reserved prior to launching executions. This has made it difficult to support resource environments (e.g. Grid, Cloud) where the available resources as well as the resource requirements of applications may be both dynamic and unpredictable. This thesis introduces a flexible execution model where the compute capacity can be adapted to fit the needs of applications as they change during execution. Resource provision in this model is based on a fine-grained, self-service approach instead of the traditional one-time, system-level model. The thesis introduces a middleware based Application Agent (AA) that provides a platform for the applications to dynamically interact and negotiate resources with the underlying resource infrastructure. We also consider the issue of transparency, i.e., hiding the provision and management of the distributed environment. This is the key to attracting public to use the technology. The AA not only replaces user-controlled process of preparing and executing an application with a transparent software-controlled process, it also hides the complexity of selecting right resources to ensure execution QoS. This service is provided by an On-line Feedback-based Automatic Resource Configuration (OAC) mechanism cooperating with the flexible execution model. The AA constantly monitors utility-based feedbacks from the application during execution and thus is able to learn its behaviour and resource characteristics. This allows it to automatically compose the most efficient execution environment on the fly and satisfy any execution requirements defined by users. Two policies are introduced to supervise the information learning and resource tuning in the OAC. The Utility Classification policy classifies hosts according to their historical performance contributions to the application. According to this classification, the AA chooses high utility hosts and withdraws low utility hosts to configure an optimum environment. The Desired Processing Power Estimation (DPPE) policy dynamically configures the execution environment according to the estimated desired total processing power needed to satisfy users’ execution requirements. Through the introducing of flexibility and transparency, a user is able to run a dynamic/normal distributed application anywhere with optimised execution performance, without managing distributed resources. Based on the standalone model, the thesis further introduces a federated resource negotiation framework as a step forward towards an autonomous multi-user distributed computing world

    Utilising the grid for augmented reality

    Get PDF
    corecore