2,091 research outputs found

    IoTSan: Fortifying the Safety of IoT Systems

    Full text link
    Today's IoT systems include event-driven smart applications (apps) that interact with sensors and actuators. A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. In this paper, we design IoTSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states. In building IoTSan, we design novel techniques tailored to IoT systems, to alleviate the state explosion associated with model checking. IoTSan also automatically translates IoT apps into a format amenable to model checking. Finally, to understand the root cause of a detected vulnerability, we design an attribution mechanism to identify problematic and potentially malicious apps. We evaluate IoTSan on the Samsung SmartThings platform. From 76 manually configured systems, IoTSan detects 147 vulnerabilities. We also evaluate IoTSan with malicious SmartThings apps from a previous effort. IoTSan detects the potential safety violations and also effectively attributes these apps as malicious.Comment: Proc. of the 14th ACM CoNEXT, 201

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Monitoring web applications for vulnerability discovery and removal under attack

    Get PDF
    Tese de mestrado, Engenharia Informática (Arquitetura, Sistemas e Redes de Computadores) Universidade de Lisboa, Faculdade de Ciências, 2018Web applications are ubiquitous in our everyday lives, as they are deployed in the most diverse contexts and support a variety of services. The correctness of these applications, however, can be compromised by vulnerabilities left in their source code, often incurring in nefarious consequences, such as the theft of private data and the adulteration of information. This dissertation proposes a solution for the automatic detection and removal of vulnerabilities in web applications programmed in the PHP language. By monitoring the user interactions with the web applications with traditional attack discovery tools, it is possible to identify malicious inputs that are eventually provided by attackers. These in- puts are then explored by a directed static analysis approach, allowing for the discovery of potential security issues and the correction of bugs in the program. The solution was implemented and validated with a set of vulnerable web applications. The experimental results demonstrate that the tool is capable of detecting and correcting SQL Injection and XSS vulnerabilities. In total 174 vulnerabilities were found in 5 web applications, where 2 of these were previously unknown by the research community(i.e., they were ”zero-day” vulnerabilities)

    Developing an in house vulnerability scanner for detecting Template Injection, XSS, and DOM-XSS vulnerabilities

    Get PDF
    Web applications are becoming an essential part of today's digital world. However, with the increase in the usage of web applications, security threats have also become more prevalent. Cyber attackers can exploit vulnerabilities in web applications to steal sensitive information or take control of the system. To prevent these attacks, web application security must be given due consideration. Existing vulnerability scanners fail to detect Template Injection, XSS, and DOM-XSS vulnerabilities effectively. To bridge this gap in web application security, a customized in-house scanner is needed to quickly and accurately identify these vulnerabilities, enhancing manual security assessments of web applications. This thesis focused on developing a modular and extensible vulnerability scanner to detect Template Injection, XSS, and DOM-based XSS vulnerabilities in web applications. Testing the scanner against other free and open-source solutions on the market showed that it outperformed them on Template injection vulnerabilities and nearly all on XSS-type vulnerabilities. While the scanner has limitations, focusing on specific injection vulnerabilities can result in better performance

    MACHINE LEARNING MODELS INTERPRETABILITY FOR MALWARE DETECTION USING MODEL AGNOSTIC LANGUAGE FOR EXPLORATION AND EXPLANATION

    Get PDF
    The adoption of the internet as a global platform has birthed a significant rise in cyber-attacks of various forms ranging from Trojans, worms, spyware, ransomware, botnet malware, rootkit, etc. In order to tackle the issue of all these forms of malware, there is a need to understand and detect them. There are various methods of detecting malware which include signature, behavioral, and machine learning. Machine learning methods have proven to be the most efficient of all for malware detection. In this thesis, a system that utilizes both the signature and dynamic behavior-based detection techniques, with the added layer of the machine learning algorithm with model explainability capability is proposed. This hybrid system provides not only predictions but also their interpretation and explanation for a malware detection task. The layer of a machine learning algorithm can be Logistic Regression, Random Forest, Naive Bayes, Decision Tree, or Support Vector Machine. Empirical performance evaluation results on publicly available datasets and manually acquired samples (both benign and malicious) are used to compare the five machine learning algorithms. DALEX (moDel Agnostic Language for Exploration and explanation) is integrated into the proposed hybrid approach to support the interpretation and understanding of the prediction to improve the trust of cyber security stakeholders in complex machine learning predictive models

    Web application penetration test: Proposal for a generic web application testing methodology

    Get PDF
    Nowadays, Security Management is beginning to become a priority for most companies. The primary aim is to prevent unauthorized identities from accessing classified information and using it against the organization. The best way to mitigate hacker attacks is to learn their methodologies. There are numerous ways to do it, but the most common is based on Penetration Tests, a simulation of an attack to verify the security of a system or environment to be analyzed. This test can be performed through physical means utilizing hardware or through social engineering. The objective of this test is to examine, under extreme circumstances, the behavior of systems, networks, or personnel devices, to identify their weaknesses and vulnerabilities. This dissertation will present an analysis of the State of the Art related to penetration testing, the most used tools and methodologies, its comparison, and the most critical web application vulnerabilities. With the goal of developing a generic security testing methodology applicable to any Web application, an actual penetration test to the web application developed by VTXRM – Software Factory (Accipiens) will be described, applying methods and Open-Source software step by step to assess the security of the different components of the system that hosts Accipiens. At the end of the dissertation, the results will be exposed and analyzed.Atualmente, a Gestão de Segurança da Informação começa a tornar-se uma prioridade para a maioria das Empresas, com o principal objetivo de impedir que identidades não autorizadas acedam a informações confidenciais e as utilizem contra a organização. Uma das melhores formas de mitigar os possíveis ataques é aprender com as metodologias dos atacantes. Existem inúmeras formas de o fazer, mas a mais comum baseia-se na realização de Testes de Intrusão, uma simulação de um ataque para verificar a segurança de um sistema ou ambiente a ser analisado. Este teste pode ser realizado através de meios físicos utilizando hardware, através de engenharia social e através de vulnerabilidades do ambiente. O objetivo deste teste é examinar, em circunstâncias extremas, o comportamento de sistemas, redes, ou dispositivos pessoais, para identificar as suas fraquezas e vulnerabilidades. Nesta dissertação será apresentada uma análise ao estado da arte relacionada com testes de penetração, as ferramentas e metodologias mais utilizadas, uma comparação entre elas, serão também explicadas algumas das vulnerabilidades mais críticas em aplicações web. O objetivo é o desenvolvimento de uma metodologia genérica de testes de intrusão, ambicionando a sua aplicabilidade e genericidade em aplicações web, sendo esta aplicada e descrita num teste de intrusão real à aplicação web desenvolvida pela VTXRM – Software Factory (Accipiens), aplicando passo a passo métodos e softwares Open-Source com o objetivo de analisar a segurança dos diferentes componentes do sistema no qual o Accipiens está instalado. No final serão apresentados os resultados do mesmo e a sua análise

    Best practices in cloud-based Penetration Testing

    Get PDF
    This thesis addresses and defines best practices in cloud-based penetration testing. The aim of this thesis is to give guidance for penetration testers how cloud-based penetration testing differs from traditional penetration testing and how certain aspects are limited compared to traditional penetration testing. In addition, this thesis gives adequate level of knowledge to reader what are the most important topics to consider when organisation is ordering a penetration test of their cloud-based systems or applications. The focus on this thesis is the three major cloud service providers (Microsoft Azure, Amazon AWS, and Google Cloud Platform). The purpose of this research is to fill the gap in scientific literature about guidance for cloud-based penetration testing for testers and organisations ordering penetration testing. This thesis contains both theoretical and empirical methods. The result of this thesis is focused collection of best practices for penetration tester, who is conducting penetration testing for cloud-based systems. The lists consist of topics focused on planning and execution of penetration testing activities

    Web application penetration testing: an analysis of a corporate application according to OWASP guidelines

    Get PDF
    During the past decade, web applications have become the most prevalent way for service delivery over the Internet. As they get deeply embedded in business activities and required to support sophisticated functionalities, the design and implementation are becoming more and more complicated. The increasing popularity and complexity make web applications a primary target for hackers on the Internet. According to Internet Live Stats up to February 2019, there is an enormous amount of websites being attacked every day, causing both direct and significant impact on huge amount of people. Even with support from security specialist, they continue having troubles due to the complexity of penetration procedures and the vast amount of testing case in both penetration testing and code reviewing. As a result, the number of hacked websites per day is increasing. The goal of this thesis is to summarize the most common and critical vulnerabilities that can be found in a web application, provide a detailed description of them, how they could be exploited and how a cybersecurity tester can find them through the process of penetration testing. To better understand the concepts exposed, there will be also a description of a case of study: a penetration test performed over a company's web application
    corecore