32,432 research outputs found

    Green Hybrid Satellite Terrestrial Networks: Fundamental Trade-Off Analysis

    Get PDF
    With the worldwide evolution of 4G generation and revolution in the information and communications technology(ICT) field to meet the exponential increase of mobile data traffic in the 2020 era, the hybrid satellite and terrestrial network based on the soft defined features is proposed from a perspective of 5G. In this paper, an end-to-end architecture of hybrid satellite and terrestrial network under the control and user Plane (C/U) split concept is studied and the performances are analysed based on stochastic geometry. The relationship between spectral efficiency (SE) and energy efficiency (EE) is investigated, taking consideration of overhead costs, transmission and circuit power, backhaul of gateway (GW), and density of small cells. Numerical results show that, by optimizing the key parameters, the hybrid satellite and terrestrial network can achieve nearly 90% EE gain with only 3% SE loss in relative dense networks, and achieve both higher EE and SE gain (20% and 5% respectively) in sparse networks toward the future 5G green communication networks

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    5G green cellular networks considering power allocation schemes

    Full text link
    It is important to assess the effect of transmit power allocation schemes on the energy consumption on random cellular networks. The energy efficiency of 5G green cellular networks with average and water-filling power allocation schemes is studied in this paper. Based on the proposed interference and achievable rate model, an energy efficiency model is proposed for MIMO random cellular networks. Furthermore, the energy efficiency with average and water-filling power allocation schemes are presented, respectively. Numerical results indicate that the maximum limits of energy efficiency are always there for MIMO random cellular networks with different intensity ratios of mobile stations (MSs) to base stations (BSs) and channel conditions. Compared with the average power allocation scheme, the water-filling scheme is shown to improve the energy efficiency of MIMO random cellular networks when channel state information (CSI) is attainable for both transmitters and receivers.Comment: 14 pages, 7 figure

    Energy efficient hybrid satellite terrestrial 5G networks with software defined features

    Get PDF
    In order to improve the manageability and adaptability of future 5G wireless networks, the software orchestration mechanism, named software defined networking (SDN) with Control and User plane (C/U-plane) decoupling, has become one of the most promising key techniques. Based on these features, the hybrid satellite terrestrial network is expected to support flexible and customized resource scheduling for both massive machinetype- communication (MTC) and high-quality multimedia requests while achieving broader global coverage, larger capacity and lower power consumption. In this paper, an end-to-end hybrid satellite terrestrial network is proposed and the performance metrics, e. g., coverage probability, spectral and energy efficiency (SE and EE), are analysed in both sparse networks and ultra-dense networks. The fundamental relationship between SE and EE is investigated, considering the overhead costs, fronthaul of the gateway (GW), density of small cells (SCs) and multiple quality-ofservice (QoS) requirements. Numerical results show that compared with current LTE networks, the hybrid system with C/U split can achieve approximately 40% and 80% EE improvement in sparse and ultra-dense networks respectively, and greatly enhance the coverage. Various resource management schemes, bandwidth allocation methods, and on-off approaches are compared, and the applications of the satellite in future 5G networks with software defined features are proposed

    Millimeter-wave Evolution for 5G Cellular Networks

    Full text link
    Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.Comment: 17 pages, 12 figures, accepted to be published in IEICE Transactions on Communications. (Mar. 2015
    • …
    corecore