1,218 research outputs found

    Feature Selection and Dimensionality Reduction in Genomics and Proteomics

    Get PDF
    International audienceFinding reliable, meaningful patterns in data with high numbers of attributes can be extremely difficult. Feature selection helps us to decide what attributes or combination of attributes are most important for finding these patterns. In this chapter, we study feature selection methods for building classification models from high-throughput genomic (microarray) and proteomic (mass spectrometry) data sets. Thousands of feature candidates must be analyzed, compared and combined in such data sets. We describe the basics of four different approaches used for feature selection and illustrate their effects on an MS cancer proteomic data set. The closing discussion provides assistance in performing an analysis in high-dimensional genomic and proteomic data

    Efficient techniques for genotype‐phenotype correlational analysis

    Get PDF
    BACKGROUND: Single Nucleotide Polymorphisms (SNPs) are sequence variations found in individuals at some specific points in the genomic sequence. As SNPs are highly conserved throughout evolution and within a population, the map of SNPs serves as an excellent genotypic marker. Conventional SNPs analysis mechanisms suffer from large run times, inefficient memory usage, and frequent overestimation. In this paper, we propose efficient, scalable, and reliable algorithms to select a small subset of SNPs from a large set of SNPs which can together be employed to perform phenotypic classification. METHODS: Our algorithms exploit the techniques of gene selection and random projections to identify a meaningful subset of SNPs. To the best of our knowledge, these techniques have not been employed before in the context of genotype‐phenotype correlations. Random projections are used to project the input data into a lower dimensional space (closely preserving distances). Gene selection is then applied on the projected data to identify a subset of the most relevant SNPs. RESULTS: We have compared the performance of our algorithms with one of the currently known best algorithms called Multifactor Dimensionality Reduction (MDR), and Principal Component Analysis (PCA) technique. Experimental results demonstrate that our algorithms are superior in terms of accuracy as well as run time. CONCLUSIONS: In our proposed techniques, random projection is used to map data from a high dimensional space to a lower dimensional space, and thus overcomes the curse of dimensionality problem. From this space of reduced dimension, we select the best subset of attributes. It is a unique mechanism in the domain of SNPs analysis, and to the best of our knowledge it is not employed before. As revealed by our experimental results, our proposed techniques offer the potential of high accuracies while keeping the run times low

    Predicting Outcomes of Hormone and Chemotherapy in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) Study by Biochemically-inspired Machine Learning

    Get PDF
    Genomic aberrations and gene expression-defined subtypes in the large METABRIC patient cohort have been used to stratify and predict survival. The present study used normalized gene expression signatures of paclitaxel drug response to predict outcome for different survival times in METABRIC patients receiving hormone (HT) and, in some cases, chemotherapy (CT) agents. This machine learning method, which distinguishes sensitivity vs. resistance in breast cancer cell lines and validates predictions in patients; was also used to derive gene signatures of other HT (tamoxifen) and CT agents (methotrexate, epirubicin, doxorubicin, and 5-fluorouracil) used in METABRIC. Paclitaxel gene signatures exhibited the best performance, however the other agents also predicted survival with acceptable accuracies. A support vector machine (SVM) model of paclitaxel response containing genes ABCB1, ABCB11, ABCC1, ABCC10, BAD, BBC3, BCL2, BCL2L1, BMF, CYP2C8, CYP3A4, MAP2, MAP4, MAPT, NR1I2, SLCO1B3, TUBB1, TUBB4A, and TUBB4B was 78.6% accurate in predicting survival of 84 patients treated with both HT and CT (median survival ≥ 4.4 yr). Accuracy was lower (73.4%) in 304 untreated patients. The performance of other machine learning approaches was also evaluated at different survival thresholds. Minimum redundancy maximum relevance feature selection of a paclitaxel-based SVM classifier based on expression of genes BCL2L1, BBC3, FGF2, FN1, and TWIST1 was 81.1% accurate in 53 CT patients. In addition, a random forest (RF) classifier using a gene signature ( ABCB1, ABCB11, ABCC1, ABCC10, BAD, BBC3, BCL2, BCL2L1, BMF, CYP2C8, CYP3A4, MAP2, MAP4, MAPT, NR1I2,SLCO1B3, TUBB1, TUBB4A, and TUBB4B) predicted \u3e3-year survival with 85.5% accuracy in 420 HT patients. A similar RF gene signature showed 82.7% accuracy in 504 patients treated with CT and/or HT. These results suggest that tumor gene expression signatures refined by machine learning techniques can be useful for predicting survival after drug therapies

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development

    High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso

    Full text link
    The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this paper, we consider a feature-wise kernelized Lasso for capturing non-linear input-output dependency. We first show that, with particular choices of kernel functions, non-redundant features with strong statistical dependence on output values can be found in terms of kernel-based independence measures. We then show that the globally optimal solution can be efficiently computed; this makes the approach scalable to high-dimensional problems. The effectiveness of the proposed method is demonstrated through feature selection experiments with thousands of features.Comment: 18 page

    Gene selection for classification of microarray data based on the Bayes error

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy.</p> <p>Results</p> <p>In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes.</p> <p>Conclusion</p> <p>The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection.</p

    Estimation of Relevant Variables on High-Dimensional Biological Patterns Using Iterated Weighted Kernel Functions

    Get PDF
    BACKGROUND The analysis of complex proteomic and genomic profiles involves the identification of significant markers within a set of hundreds or even thousands of variables that represent a high-dimensional problem space. The occurrence of noise, redundancy or combinatorial interactions in the profile makes the selection of relevant variables harder. METHODOLOGY/PRINCIPAL FINDINGS Here we propose a method to select variables based on estimated relevance to hidden patterns. Our method combines a weighted-kernel discriminant with an iterative stochastic probability estimation algorithm to discover the relevance distribution over the set of variables. We verified the ability of our method to select predefined relevant variables in synthetic proteome-like data and then assessed its performance on biological high-dimensional problems. Experiments were run on serum proteomic datasets of infectious diseases. The resulting variable subsets achieved classification accuracies of 99% on Human African Trypanosomiasis, 91% on Tuberculosis, and 91% on Malaria serum proteomic profiles with fewer than 20% of variables selected. Our method scaled-up to dimensionalities of much higher orders of magnitude as shown with gene expression microarray datasets in which we obtained classification accuracies close to 90% with fewer than 1% of the total number of variables. CONCLUSIONS Our method consistently found relevant variables attaining high classification accuracies across synthetic and biological datasets. Notably, it yielded very compact subsets compared to the original number of variables, which should simplify downstream biological experimentation

    Gene Expression Analysis Methods on Microarray Data a A Review

    Get PDF
    In recent years a new type of experiments are changing the way that biologists and other specialists analyze many problems. These are called high throughput experiments and the main difference with those that were performed some years ago is mainly in the quantity of the data obtained from them. Thanks to the technology known generically as microarrays, it is possible to study nowadays in a single experiment the behavior of all the genes of an organism under different conditions. The data generated by these experiments may consist from thousands to millions of variables and they pose many challenges to the scientists who have to analyze them. Many of these are of statistical nature and will be the center of this review. There are many types of microarrays which have been developed to answer different biological questions and some of them will be explained later. For the sake of simplicity we start with the most well known ones: expression microarrays

    Optimal Search Based Gene Selection for Cancer Prognosis

    Get PDF
    Gene array data have been widely used for cancer diagnosis in recent years. However, high dimensionality has been a major problem for gene array-based classification. Gene selection is critical for accurate classification and for identifying the marker genes to discriminate different tumor types. This paper created a framework of gene selection methods based on previous studies. We focused on optimal search-based gene subset selection methods that evaluate the group performance of genes and help to pinpoint global optimal set of marker genes. Notably, this study is the first to introduce tabu search to gene selection from high dimensional gene array data. Experimental studies on several gene array datasets demonstrated the effectiveness of optimal search-based gene subset selection to identify marker genes
    corecore