127 research outputs found

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    Pose Invariant Deformable Shape Priors Using L1 Higher Order Sparse Graphs

    Get PDF
    International audienceIn this paper we propose a novel method for knowledge-based segmentation. We adopt a point distribution graphical model formulation which encodes pose invariant shape priors through L1 sparse higher order cliques. Local shape deformation properties of the model can be captured and learned in an optimal manner from a training set using dual decomposition. These higher order shape terms are combined with conventional visual ones aiming at maximizing the posterior segmentation likelihood. The considered graphical model is optimized using dual decomposition and is used towards 2D (computer vision) and 3D object segmentation (medical imaging) with promising results

    Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation

    Full text link
    In cardiac magnetic resonance imaging, fully-automatic segmentation of the heart enables precise structural and functional measurements to be taken, e.g. from short-axis MR images of the left-ventricle. In this work we propose a recurrent fully-convolutional network (RFCN) that learns image representations from the full stack of 2D slices and has the ability to leverage inter-slice spatial dependences through internal memory units. RFCN combines anatomical detection and segmentation into a single architecture that is trained end-to-end thus significantly reducing computational time, simplifying the segmentation pipeline, and potentially enabling real-time applications. We report on an investigation of RFCN using two datasets, including the publicly available MICCAI 2009 Challenge dataset. Comparisons have been carried out between fully convolutional networks and deep restricted Boltzmann machines, including a recurrent version that leverages inter-slice spatial correlation. Our studies suggest that RFCN produces state-of-the-art results and can substantially improve the delineation of contours near the apex of the heart.Comment: MICCAI Workshop RAMBO 201

    Recalage/Fusion d'images multimodales à l'aide de graphes d'ordres supérieurs

    Get PDF
    The main objective of this thesis is the exploration of higher order Markov Random Fields for image registration, specifically to encode the knowledge of global transformations, like rigid transformations, into the graph structure. Our main framework applies to 2D-2D or 3D-3D registration and use a hierarchical grid-based Markov Random Field model where the hidden variables are the displacements vectors of the control points of the grid.We first present the construction of a graph that allows to perform linear registration, which means here that we can perform affine registration, rigid registration, or similarity registration with the same graph while changing only one potential. Our framework is thus modular regarding the sought transformation and the metric used. Inference is performed with Dual Decomposition, which allows to handle the higher order hyperedges and which ensures the global optimum of the function is reached if we have an agreement among the slaves. A similar structure is also used to perform 2D-3D registration.Second, we fuse our former graph with another structure able to perform deformable registration. The resulting graph is more complex and another optimisation algorithm, called Alternating Direction Method of Multipliers is needed to obtain a better solution within reasonable time. It is an improvement of Dual Decomposition which speeds up the convergence. This framework is able to solve simultaneously both linear and deformable registration which allows to remove a potential bias created by the standard approach of consecutive registrations.L’objectif principal de cette thĂšse est l’exploration du recalage d’images Ă  l’aide de champs alĂ©atoires de Markov d’ordres supĂ©rieurs, et plus spĂ©cifiquement d’intĂ©grer la connaissance de transformations globales comme une transformation rigide, dans la structure du graphe. Notre cadre principal s’applique au recalage 2D-2D ou 3D-3D et utilise une approche hiĂ©rarchique d’un modĂšle de champ de Markov dont le graphe est une grille rĂ©guliĂšre. Les variables cachĂ©es sont les vecteurs de dĂ©placements des points de contrĂŽle de la grille.Tout d’abord nous expliciterons la construction du graphe qui permet de recaler des images en cherchant entre elles une transformation affine, rigide, ou une similaritĂ©, tout en ne changeant qu’un potentiel sur l’ensemble du graphe, ce qui assure une flexibilitĂ© lors du recalage. Le choix de la mĂ©trique est Ă©galement laissĂ©e Ă  l’utilisateur et ne modifie pas le fonctionnement de notre algorithme. Nous utilisons l’algorithme d’optimisation de dĂ©composition duale qui permet de gĂ©rer les hyper-arĂȘtes du graphe et qui garantit l’obtention du minimum exact de la fonction pourvu que l’on ait un accord entre les esclaves. Un graphe similaire est utilisĂ© pour rĂ©aliser du recalage 2D-3D.Ensuite, nous fusionnons le graphe prĂ©cĂ©dent avec un autre graphe construit pour rĂ©aliser le recalage dĂ©formable. Le graphe rĂ©sultant de cette fusion est plus complexe et, afin d’obtenir un rĂ©sultat en un temps raisonnable, nous utilisons une mĂ©thode d’optimisation appelĂ©e ADMM (Alternating Direction Method of Multipliers) qui a pour but d’accĂ©lĂ©rer la convergence de la dĂ©composition duale. Nous pouvons alors rĂ©soudre simultanĂ©ment recalage affine et dĂ©formable, ce qui nous dĂ©barrasse du biais potentiel issu de l’approche classique qui consiste Ă  recaler affinement puis de maniĂšre dĂ©formable

    Filter-Based Probabilistic Markov Random Field Image Priors: Learning, Evaluation, and Image Analysis

    Get PDF
    Markov random fields (MRF) based on linear filter responses are one of the most popular forms for modeling image priors due to their rigorous probabilistic interpretations and versatility in various applications. In this dissertation, we propose an application-independent method to quantitatively evaluate MRF image priors using model samples. To this end, we developed an efficient auxiliary-variable Gibbs samplers for a general class of MRFs with flexible potentials. We found that the popular pairwise and high-order MRF priors capture image statistics quite roughly and exhibit poor generative properties. We further developed new learning strategies and obtained high-order MRFs that well capture the statistics of the inbuilt features, thus being real maximum-entropy models, and other important statistical properties of natural images, outlining the capabilities of MRFs. We suggest a multi-modal extension of MRF potentials which not only allows to train more expressive priors, but also helps to reveal more insights of MRF variants, based on which we are able to train compact, fully-convolutional restricted Boltzmann machines (RBM) that can model visual repetitive textures even better than more complex and deep models. The learned high-order MRFs allow us to develop new methods for various real-world image analysis problems. For denoising of natural images and deconvolution of microscopy images, the MRF priors are employed in a pure generative setting. We propose efficient sampling-based methods to infer Bayesian minimum mean squared error (MMSE) estimates, which substantially outperform maximum a-posteriori (MAP) estimates and can compete with state-of-the-art discriminative methods. For non-rigid registration of live cell nuclei in time-lapse microscopy images, we propose a global optical flow-based method. The statistics of noise in fluorescence microscopy images are studied to derive an adaptive weighting scheme for increasing model robustness. High-order MRFs are also employed to train image filters for extracting important features of cell nuclei and the deformation of nuclei are then estimated in the learned feature spaces. The developed method outperforms previous approaches in terms of both registration accuracy and computational efficiency

    Recalage déformable à base de graphes : mise en correspondance coupe-vers-volume et méthodes contextuelles

    Get PDF
    Image registration methods, which aim at aligning two or more images into one coordinate system, are among the oldest and most widely used algorithms in computer vision. Registration methods serve to establish correspondence relationships among images (captured at different times, from different sensors or from different viewpoints) which are not obvious for the human eye. A particular type of registration algorithm, known as graph-based deformable registration methods, has become popular during the last decade given its robustness, scalability, efficiency and theoretical simplicity. The range of problems to which it can be adapted is particularly broad. In this thesis, we propose several extensions to the graph-based deformable registration theory, by exploring new application scenarios and developing novel methodological contributions.Our first contribution is an extension of the graph-based deformable registration framework, dealing with the challenging slice-to-volume registration problem. Slice-to-volume registration aims at registering a 2D image within a 3D volume, i.e. we seek a mapping function which optimally maps a tomographic slice to the 3D coordinate space of a given volume. We introduce a scalable, modular and flexible formulation accommodating low-rank and high order terms, which simultaneously selects the plane and estimates the in-plane deformation through a single shot optimization approach. The proposed framework is instantiated into different variants based on different graph topology, label space definition and energy construction. Simulated and real-data in the context of ultrasound and magnetic resonance registration (where both framework instantiations as well as different optimization strategies are considered) demonstrate the potentials of our method.The other two contributions included in this thesis are related to how semantic information can be encompassed within the registration process (independently of the dimensionality of the images). Currently, most of the methods rely on a single metric function explaining the similarity between the source and target images. We argue that incorporating semantic information to guide the registration process will further improve the accuracy of the results, particularly in the presence of semantic labels making the registration a domain specific problem.We consider a first scenario where we are given a classifier inferring probability maps for different anatomical structures in the input images. Our method seeks to simultaneously register and segment a set of input images, incorporating this information within the energy formulation. The main idea is to use these estimated maps of semantic labels (provided by an arbitrary classifier) as a surrogate for unlabeled data, and combine them with population deformable registration to improve both alignment and segmentation.Our last contribution also aims at incorporating semantic information to the registration process, but in a different scenario. In this case, instead of supposing that we have pre-trained arbitrary classifiers at our disposal, we are given a set of accurate ground truth annotations for a variety of anatomical structures. We present a methodological contribution that aims at learning context specific matching criteria as an aggregation of standard similarity measures from the aforementioned annotated data, using an adapted version of the latent structured support vector machine (LSSVM) framework.Les mĂ©thodes de recalage d’images, qui ont pour but l’alignement de deux ou plusieurs images dans un mĂȘme systĂšme de coordonnĂ©es, sont parmi les algorithmes les plus anciens et les plus utilisĂ©s en vision par ordinateur. Les mĂ©thodes de recalage servent Ă  Ă©tablir des correspondances entre des images (prises Ă  des moments diffĂ©rents, par diffĂ©rents senseurs ou avec diffĂ©rentes perspectives), lesquelles ne sont pas Ă©videntes pour l’Ɠil humain. Un type particulier d’algorithme de recalage, connu comme « les mĂ©thodes de recalage dĂ©formables Ă  l’aide de modĂšles graphiques » est devenu de plus en plus populaire ces derniĂšres annĂ©es, grĂące Ă  sa robustesse, sa scalabilitĂ©, son efficacitĂ© et sa simplicitĂ© thĂ©orique. La gamme des problĂšmes auxquels ce type d’algorithme peut ĂȘtre adaptĂ© est particuliĂšrement vaste. Dans ce travail de thĂšse, nous proposons plusieurs extensions Ă  la thĂ©orie de recalage dĂ©formable Ă  l’aide de modĂšles graphiques, en explorant de nouvelles applications et en dĂ©veloppant des contributions mĂ©thodologiques originales.Notre premiĂšre contribution est une extension du cadre du recalage Ă  l’aide de graphes, en abordant le problĂšme trĂšs complexe du recalage d’une tranche avec un volume. Le recalage d’une tranche avec un volume est le recalage 2D dans un volume 3D, comme par exemple le mapping d’une tranche tomographique dans un systĂšme de coordonnĂ©es 3D d’un volume en particulier. Nos avons proposĂ© une formulation scalable, modulaire et flexible pour accommoder des termes d'ordre Ă©levĂ© et de rang bas, qui peut sĂ©lectionner le plan et estimer la dĂ©formation dans le plan de maniĂšre simultanĂ©e par une seule approche d'optimisation. Le cadre proposĂ© est instanciĂ© en diffĂ©rentes variantes, basĂ©s sur diffĂ©rentes topologies du graph, dĂ©finitions de l'espace des Ă©tiquettes et constructions de l'Ă©nergie. Le potentiel de notre mĂ©thode a Ă©tĂ© dĂ©montrĂ© sur des donnĂ©es rĂ©elles ainsi que des donnĂ©es simulĂ©es dans le cadre d’une rĂ©sonance magnĂ©tique d’ultrason (oĂč le cadre d’installation et les stratĂ©gies d’optimisation ont Ă©tĂ© considĂ©rĂ©s).Les deux autres contributions inclues dans ce travail de thĂšse, sont liĂ©es au problĂšme de l’intĂ©gration de l’information sĂ©mantique dans la procĂ©dure de recalage (indĂ©pendamment de la dimensionnalitĂ© des images). Actuellement, la plupart des mĂ©thodes comprennent une seule fonction mĂ©trique pour expliquer la similaritĂ© entre l’image source et l’image cible. Nous soutenons que l'intĂ©gration des informations sĂ©mantiques pour guider la procĂ©dure de recalage pourra encore amĂ©liorer la prĂ©cision des rĂ©sultats, en particulier en prĂ©sence d'Ă©tiquettes sĂ©mantiques faisant du recalage un problĂšme spĂ©cifique adaptĂ© Ă  chaque domaine.Nous considĂ©rons un premier scĂ©nario en proposant un classificateur pour infĂ©rer des cartes de probabilitĂ© pour les diffĂ©rentes structures anatomiques dans les images d'entrĂ©e. Notre mĂ©thode vise Ă  recaler et segmenter un ensemble d'images d'entrĂ©e simultanĂ©ment, en intĂ©grant cette information dans la formulation de l'Ă©nergie. L'idĂ©e principale est d'utiliser ces cartes estimĂ©es des Ă©tiquettes sĂ©mantiques (fournie par un classificateur arbitraire) comme un substitut pour les donnĂ©es non-Ă©tiquettĂ©es, et les combiner avec le recalage dĂ©formable pour amĂ©liorer l'alignement ainsi que la segmentation.Notre derniĂšre contribution vise Ă©galement Ă  intĂ©grer l'information sĂ©mantique pour la procĂ©dure de recalage, mais dans un scĂ©nario diffĂ©rent. Dans ce cas, au lieu de supposer que nous avons des classificateurs arbitraires prĂ©-entraĂźnĂ©s Ă  notre disposition, nous considĂ©rons un ensemble d’annotations prĂ©cis (vĂ©ritĂ© terrain) pour une variĂ©tĂ© de structures anatomiques. Nous prĂ©sentons une contribution mĂ©thodologique qui vise Ă  l'apprentissage des critĂšres correspondants au contexte spĂ©cifique comme une agrĂ©gation des mesures de similaritĂ© standard Ă  partir des donnĂ©es annotĂ©es, en utilisant une adaptation de l’algorithme « Latent Structured Support Vector Machine »
    • 

    corecore