61,835 research outputs found

    Translation Of AADL To PNML To Ensure The Utilization Of Petri Nets

    Get PDF
    Architecture Analysis and Design Language (AADL), which is used to design and analyze software and hardware architectures of embedded and real-time systems, has proven to be a very efficient way of expressing the non-functional properties of safety-critical systems and architectural modeling. Petri nets are the graphical and mathematical modeling tools used to describe and study information processing systems characterized as concurrent and distributed. As AADL lacks the formal semantics needed to show the functional properties of such systems, the objective of this research was to extend AADL to enable other Petri nets to be incorporated into Petri Net Markup Language (PNML), an interchange language for Petri nets. PNML makes it possible to incorporate different types of analysis using different types of Petri net. To this end, the interchange format Extensible Markup Language (XML) was selected and AADL converted to AADL-XML (the XML format of AADL) and Petri nets to PNML, the XML-format of Petri nets, via XSLT script. PNML was chosen as the transfer format for Petri nets due to its universality, which enables designers to easily map PNML to many different types of Petri nets. Manual conversion of AADL to PNML is error-prone and tedious and thus requires automation, so XSLT script was utilized for the conversion of the two languages in their XML format. Mapping rules were defined for the conversion from AADL to PNML and the translation to XSLT automated. Finally, a PNML plug-in was designed and incorporated into the Open Source AADL Tool Environment (OSATE)

    Graphical modelling language for spycifying concurrency based on CSP

    Get PDF
    Introduced in this (shortened) paper is a graphical modelling language for specifying concurrency in software designs. The language notations are derived from CSP and the resulting designs form CSP diagrams. The notations reflect both data-flow and control-flow aspects of concurrent software architectures. These designs can automatically be described by CSP algebraic expressions that can be used for formal analysis. The designer does not have to be aware of the underlying mathematics. The techniques and rules presented provide guidance to the development of concurrent software architectures. One can detect and reason about compositional conflicts (errors in design), potential deadlocks (errors at run-time), and priority inversion problems (performance burden) at a high level of abstraction. The CSP diagram collaborates with objectoriented modelling languages and structured methods

    gCSP: A Graphical Tool for Designing CSP systems

    Get PDF
    For broad acceptance of an engineering paradigm, a graphical notation and a supporting design tool seem necessary. This paper discusses certain issues of developing a design environment for building systems based on CSP. Some of the issues discussed depend specifically on the underlying theory of CSP, while a number of them are common for any graphical notation and supporting tools, such as provisions for complexity management and design overview

    Evaluating distributed cognitive resources for wayfinding in a desktop virtual environment.

    Get PDF
    As 3D interfaces, and in particular virtual environments, become increasingly realistic there is a need to investigate the location and configuration of information resources, as distributed in the humancomputer system, to support any required activities. It is important for the designer of 3D interfaces to be aware of information resource availability and distribution when considering issues such as cognitive load on the user. This paper explores how a model of distributed resources can support the design of alternative aids to virtual environment wayfinding with varying levels of cognitive load. The wayfinding aids have been implemented and evaluated in a desktop virtual environment

    On properties of modeling control software for embedded control applications with CSP/CT framework

    Get PDF
    This PROGRESS project (TES.5224) traces a design framework for implementing embedded real-time software for control applications by exploiting its natural concurrency. The paper illustrates the stage of yielded automation in the process of structuring complex control software architectures, modeling controlled mechatronic systems and designing corresponding control laws, simulating them, generating control code out of simulated control strategy and implementing the software system on a (embedded) computer. The gap between the development of control strategies and the procedures of implementing them on chosen hardware targets is going to be overcome

    TAPAs: A Tool for the Analysis of Process Algebras

    Get PDF
    Process algebras are formalisms for modelling concurrent systems that permit mathematical reasoning with respect to a set of desired properties. TAPAs is a tool that can be used to support the use of process algebras to specify and analyze concurrent systems. It does not aim at guaranteeing high performances, but has been developed as a support to teaching. Systems are described as process algebras terms that are then mapped to labelled transition systems (LTSs). Properties are verified either by checking equivalence of concrete and abstract systems descriptions, or by model checking temporal formulae over the obtained LTS. A key feature of TAPAs, that makes it particularly suitable for teaching, is that it maintains a consistent double representation of each system both as a term and as a graph. Another useful didactical feature is the exhibition of counterexamples in case equivalences are not verified or the proposed formulae are not satisfied

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Teaching embedded software development utilising QNX and Qt with an automotive-themed coursework application

    Get PDF
    • 

    corecore