521 research outputs found

    From rituals to magic: Interactive art and HCI of the past, present, and future

    Get PDF
    The connection between art and technology is much tighter than is commonly recognized. The emergence of aesthetic computing in the early 2000s has brought renewed focus on this relationship. In this article, we articulate how art and Human–Computer Interaction (HCI) are compatible with each other and actually essential to advance each other in this era, by briefly addressing interconnected components in both areas—interaction, creativity, embodiment, affect, and presence. After briefly introducing the history of interactive art, we discuss how art and HCI can contribute to one another by illustrating contemporary examples of art in immersive environments, robotic art, and machine intelligence in art. Then, we identify challenges and opportunities for collaborative efforts between art and HCI. Finally, we reiterate important implications and pose future directions. This article is intended as a catalyst to facilitate discussions on the mutual benefits of working together in the art and HCI communities. It also aims to provide artists and researchers in this domain with suggestions about where to go next

    Implementacija umjetne inteligencije i njezin budući potencijal

    Get PDF
    Firstly, in the paper, I explored the history of artificial intelligence (AI) thought spanning from the early conceptual beginnings, then through early examples of primitive AI applications and all the way to recent feats in this field. Next, I analyzed types of AI, both present and future, encompassing two wide schools of thought; after which I detailed the pathways to achieving practical implementation of AI through machine learning (ML) and deep learning (DL) as well as a brief history of TensorFlow. The following chapters focused on analyzing case studies of AI application in the fields of banking and finance from the financial sector, and transportation in general, with the ensuing critical analyses. The final chapter is concerned with future implementation of AI

    Information Technology and Lawyers. Advanced Technology in the Legal Domain, from Challenges to Daily Routine

    Get PDF

    Organisations as complex adaptive systems : implications for the design of information systems

    Get PDF
    Today a paradigm shift in the field of organisation and management theories is no longer disputed and the need to switch from the Command-and-Control to the Leaming Organisation Paradigm (LOP) in the area of organisational theory is well understood. However, it is less well appreciated that learning organisations cannot operate effectively if supported by centralised databases and tailor-made application programs. LOP emphasises adaptability, flexibility, participation and learning. It is important to understand that the changes in organisational and management strategies will not on their own be able to produce the desired effects unless they are supported by appropriate changes in organisational culture, and by effective information systems. This research demonstrates that conventional information system strategies and development methods are no longer adequate. Information system strategies must respond to these needs of the LOP and incorporate new information systems that are capable of evolving, adapting and responding to the constantly changing business environment. The desired adaptability, flexibility and agility in information systems for LOP can be achieved by exploiting the technologies of the Internet, World Wide Web, intelligent agents and intranets. This research establishes that there is a need for synergy between organisational structures and organisational information systems. To obtain this desired synergy it is essential that new information systems be designed as an integral part of the learning organisational structure itself. Complexity theory provides a new set of metaphors and a host of concepts for the understanding of organisations as complex adaptive systems. This research introduces the principles of Complex Adaptive Systems and draws on their significance for designing the information systems needed to support the new generation of learning organisations. The search for new models of information system strategies for today's dynamic world of business points to the 'swarm models' observed in Nature

    Reasoning and understanding grasp affordances for robot manipulation

    Get PDF
    This doctoral research focuses on developing new methods that enable an artificial agent to grasp and manipulate objects autonomously. More specifically, we are using the concept of affordances to learn and generalise robot grasping and manipulation techniques. [75] defined affordances as the ability of an agent to perform a certain action with an object in a given environment. In robotics, affordances defines the possibility of an agent to perform actions with an object. Therefore, by understanding the relation between actions, objects and the effect of these actions, the agent understands the task at hand, providing the robot with the potential to bridge perception to action. The significance of affordances in robotics has been studied from varied perspectives, such as psychology and cognitive sciences. Many efforts have been made to pragmatically employ the concept of affordances as it provides the potential for an artificial agent to perform tasks autonomously. We start by reviewing and finding common ground amongst different strategies that use affordances for robotic tasks. We build on the identified grounds to provide guidance on including the concept of affordances as a medium to boost autonomy for an artificial agent. To this end, we outline common design choices to build an affordance relation; and their implications on the generalisation capabilities of the agent when facing previously unseen scenarios. Based on our exhaustive review, we conclude that prior research on object affordance detection is effective, however, among others, it has the following technical gaps: (i) the methods are limited to a single object ↔ affordance hypothesis, and (ii) they cannot guarantee task completion or any level of performance for the manipulation task alone nor (iii) in collaboration with other agents. In this research thesis, we propose solutions to these technical challenges. In an incremental fashion, we start by addressing the limited generalisation capabilities of, at the time state-of-the-art methods, by strengthening the perception to action connection through the construction of an Knowledge Base (KB). We then leverage the information encapsulated in the KB to design and implement a reasoning and understanding method based on statistical relational leaner (SRL) that allows us to cope with uncertainty in testing environments, and thus, improve generalisation capabilities in affordance-aware manipulation tasks. The KB in conjunctions with our SRL are the base for our designed solutions that guarantee task completion when the robot is performing a task alone as well as when in collaboration with other agents. We finally expose and discuss a range of interesting avenues that have the potential to thrive the capabilities of a robotic agent through the use of the concept of affordances for manipulation tasks. A summary of the contributions of this thesis can be found at: https://bit.ly/grasp_affordance_reasonin
    • …
    corecore