3,849 research outputs found

    Quantum Graphical Models and Belief Propagation

    Get PDF
    Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markov Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersely-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described.Comment: 58 pages, 9 figure

    Efficient algorithms for conditional independence inference

    Get PDF
    The topic of the paper is computer testing of (probabilistic) conditional independence (CI) implications by an algebraic method of structural imsets. The basic idea is to transform (sets of) CI statements into certain integral vectors and to verify by a computer the corresponding algebraic relation between the vectors, called the independence implication. We interpret the previous methods for computer testing of this implication from the point of view of polyhedral geometry. However, the main contribution of the paper is a new method, based on linear programming (LP). The new method overcomes the limitation of former methods to the number of involved variables. We recall/describe the theoretical basis for all four methods involved in our computational experiments, whose aim was to compare the efficiency of the algorithms. The experiments show that the LP method is clearly the fastest one. As an example of possible application of such algorithms we show that testing inclusion of Bayesian network structures or whether a CI statement is encoded in an acyclic directed graph can be done by the algebraic method

    Total positivity in exponential families with application to binary variables

    Full text link
    We study exponential families of distributions that are multivariate totally positive of order 2 (MTP2), show that these are convex exponential families, and derive conditions for existence of the MLE. Quadratic exponential familes of MTP2 distributions contain attractive Gaussian graphical models and ferromagnetic Ising models as special examples. We show that these are defined by intersecting the space of canonical parameters with a polyhedral cone whose faces correspond to conditional independence relations. Hence MTP2 serves as an implicit regularizer for quadratic exponential families and leads to sparsity in the estimated graphical model. We prove that the maximum likelihood estimator (MLE) in an MTP2 binary exponential family exists if and only if both of the sign patterns (1,1)(1,-1) and (1,1)(-1,1) are represented in the sample for every pair of variables; in particular, this implies that the MLE may exist with n=dn=d observations, in stark contrast to unrestricted binary exponential families where 2d2^d observations are required. Finally, we provide a novel and globally convergent algorithm for computing the MLE for MTP2 Ising models similar to iterative proportional scaling and apply it to the analysis of data from two psychological disorders

    Geometry of rank tests

    Get PDF
    We study partitions of the symmetric group which have desirable geometric properties. The statistical tests defined by such partitions involve counting all permutations in the equivalence classes. These permutations are the linear extensions of partially ordered sets specified by the data. Our methods refine rank tests of non-parametric statistics, such as the sign test and the runs test, and are useful for the exploratory analysis of ordinal data. Convex rank tests correspond to probabilistic conditional independence structures known as semi-graphoids. Submodular rank tests are classified by the faces of the cone of submodular functions, or by Minkowski summands of the permutohedron. We enumerate all small instances of such rank tests. Graphical tests correspond to both graphical models and to graph associahedra, and they have excellent statistical and algorithmic properties.Comment: 8 pages, 4 figures. See also http://bio.math.berkeley.edu/ranktests/. v2: Expanded proofs, revised after reviewer comment

    Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?

    Get PDF
    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems

    Algebraic Aspects of Conditional Independence and Graphical Models

    Full text link
    This chapter of the forthcoming Handbook of Graphical Models contains an overview of basic theorems and techniques from algebraic geometry and how they can be applied to the study of conditional independence and graphical models. It also introduces binomial ideals and some ideas from real algebraic geometry. When random variables are discrete or Gaussian, tools from computational algebraic geometry can be used to understand implications between conditional independence statements. This is accomplished by computing primary decompositions of conditional independence ideals. As examples the chapter presents in detail the graphical model of a four cycle and the intersection axiom, a certain implication of conditional independence statements. Another important problem in the area is to determine all constraints on a graphical model, for example, equations determined by trek separation. The full set of equality constraints can be determined by computing the model's vanishing ideal. The chapter illustrates these techniques and ideas with examples from the literature and provides references for further reading.Comment: 20 pages, 1 figur

    Conjunctive Bayesian networks

    Full text link
    Conjunctive Bayesian networks (CBNs) are graphical models that describe the accumulation of events which are constrained in the order of their occurrence. A CBN is given by a partial order on a (finite) set of events. CBNs generalize the oncogenetic tree models of Desper et al. by allowing the occurrence of an event to depend on more than one predecessor event. The present paper studies the statistical and algebraic properties of CBNs. We determine the maximum likelihood parameters and present a combinatorial solution to the model selection problem. Our method performs well on two datasets where the events are HIV mutations associated with drug resistance. Concluding with a study of the algebraic properties of CBNs, we show that CBNs are toric varieties after a coordinate transformation and that their ideals possess a quadratic Gr\"{o}bner basis.Comment: Published in at http://dx.doi.org/10.3150/07-BEJ6133 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Binary Models for Marginal Independence

    Full text link
    Log-linear models are a classical tool for the analysis of contingency tables. In particular, the subclass of graphical log-linear models provides a general framework for modelling conditional independences. However, with the exception of special structures, marginal independence hypotheses cannot be accommodated by these traditional models. Focusing on binary variables, we present a model class that provides a framework for modelling marginal independences in contingency tables. The approach taken is graphical and draws on analogies to multivariate Gaussian models for marginal independence. For the graphical model representation we use bi-directed graphs, which are in the tradition of path diagrams. We show how the models can be parameterized in a simple fashion, and how maximum likelihood estimation can be performed using a version of the Iterated Conditional Fitting algorithm. Finally we consider combining these models with symmetry restrictions
    corecore