8,293 research outputs found

    A Graph-CNN for 3D Point Cloud Classification

    Full text link
    Graph convolutional neural networks (Graph-CNNs) extend traditional CNNs to handle data that is supported on a graph. Major challenges when working with data on graphs are that the support set (the vertices of the graph) do not typically have a natural ordering, and in general, the topology of the graph is not regular (i.e., vertices do not all have the same number of neighbors). Thus, Graph-CNNs have huge potential to deal with 3D point cloud data which has been obtained from sampling a manifold. In this paper, we develop a Graph-CNN for classifying 3D point cloud data, called PointGCN. The architecture combines localized graph convolutions with two types of graph downsampling operations (also known as pooling). By the effective exploration of the point cloud local structure using the Graph-CNN, the proposed architecture achieves competitive performance on the 3D object classification benchmark ModelNet, and our architecture is more stable than competing schemes.Comment: Published as a conference paper at ICASSP 201

    Linked Dynamic Graph CNN: Learning on Point Cloud via Linking Hierarchical Features

    Full text link
    Learning on point cloud is eagerly in demand because the point cloud is a common type of geometric data and can aid robots to understand environments robustly. However, the point cloud is sparse, unstructured, and unordered, which cannot be recognized accurately by a traditional convolutional neural network (CNN) nor a recurrent neural network (RNN). Fortunately, a graph convolutional neural network (Graph CNN) can process sparse and unordered data. Hence, we propose a linked dynamic graph CNN (LDGCNN) to classify and segment point cloud directly in this paper. We remove the transformation network, link hierarchical features from dynamic graphs, freeze feature extractor, and retrain the classifier to increase the performance of LDGCNN. We explain our network using theoretical analysis and visualization. Through experiments, we show that the proposed LDGCNN achieves state-of-art performance on two standard datasets: ModelNet40 and ShapeNet

    GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud

    Full text link
    Exploiting fine-grained semantic features on point cloud is still challenging due to its irregular and sparse structure in a non-Euclidean space. Among existing studies, PointNet provides an efficient and promising approach to learn shape features directly on unordered 3D point cloud and has achieved competitive performance. However, local feature that is helpful towards better contextual learning is not considered. Meanwhile, attention mechanism shows efficiency in capturing node representation on graph-based data by attending over neighboring nodes. In this paper, we propose a novel neural network for point cloud, dubbed GAPNet, to learn local geometric representations by embedding graph attention mechanism within stacked Multi-Layer-Perceptron (MLP) layers. Firstly, we introduce a GAPLayer to learn attention features for each point by highlighting different attention weights on neighborhood. Secondly, in order to exploit sufficient features, a multi-head mechanism is employed to allow GAPLayer to aggregate different features from independent heads. Thirdly, we propose an attention pooling layer over neighbors to capture local signature aimed at enhancing network robustness. Finally, GAPNet applies stacked MLP layers to attention features and local signature to fully extract local geometric structures. The proposed GAPNet architecture is tested on the ModelNet40 and ShapeNet part datasets, and achieves state-of-the-art performance in both shape classification and part segmentation tasks

    Relation-Shape Convolutional Neural Network for Point Cloud Analysis

    Full text link
    Point cloud analysis is very challenging, as the shape implied in irregular points is difficult to capture. In this paper, we propose RS-CNN, namely, Relation-Shape Convolutional Neural Network, which extends regular grid CNN to irregular configuration for point cloud analysis. The key to RS-CNN is learning from relation, i.e., the geometric topology constraint among points. Specifically, the convolutional weight for local point set is forced to learn a high-level relation expression from predefined geometric priors, between a sampled point from this point set and the others. In this way, an inductive local representation with explicit reasoning about the spatial layout of points can be obtained, which leads to much shape awareness and robustness. With this convolution as a basic operator, RS-CNN, a hierarchical architecture can be developed to achieve contextual shape-aware learning for point cloud analysis. Extensive experiments on challenging benchmarks across three tasks verify RS-CNN achieves the state of the arts.Comment: Accepted to CVPR 2019 as an oral presentation. Project page at https://yochengliu.github.io/Relation-Shape-CN

    3DTI-Net: Learn Inner Transform Invariant 3D Geometry Features using Dynamic GCN

    Full text link
    Deep learning on point clouds has made a lot of progress recently. Many point cloud dedicated deep learning frameworks, such as PointNet and PointNet++, have shown advantages in accuracy and speed comparing to those using traditional 3D convolution algorithms. However, nearly all of these methods face a challenge, since the coordinates of the point cloud are decided by the coordinate system, they cannot handle the problem of 3D transform invariance properly. In this paper, we propose a general framework for point cloud learning. We achieve transform invariance by learning inner 3D geometry feature based on local graph representation, and propose a feature extraction network based on graph convolution network. Through experiments on classification and segmentation tasks, our method achieves state-of-the-art performance in rotated 3D object classification, and achieve competitive performance with the state-of-the-art in classification and segmentation tasks with fixed coordinate value

    Octree guided CNN with Spherical Kernels for 3D Point Clouds

    Full text link
    We propose an octree guided neural network architecture and spherical convolutional kernel for machine learning from arbitrary 3D point clouds. The network architecture capitalizes on the sparse nature of irregular point clouds, and hierarchically coarsens the data representation with space partitioning. At the same time, the proposed spherical kernels systematically quantize point neighborhoods to identify local geometric structures in the data, while maintaining the properties of translation-invariance and asymmetry. We specify spherical kernels with the help of network neurons that in turn are associated with spatial locations. We exploit this association to avert dynamic kernel generation during network training that enables efficient learning with high resolution point clouds. The effectiveness of the proposed technique is established on the benchmark tasks of 3D object classification and segmentation, achieving new state-of-the-art on ShapeNet and RueMonge2014 datasets.Comment: Accepted in IEEE CVPR 2019. arXiv admin note: substantial text overlap with arXiv:1805.0787

    Dynamic Graph CNN for Learning on Point Clouds

    Full text link
    Point clouds provide a flexible geometric representation suitable for countless applications in computer graphics; they also comprise the raw output of most 3D data acquisition devices. While hand-designed features on point clouds have long been proposed in graphics and vision, however, the recent overwhelming success of convolutional neural networks (CNNs) for image analysis suggests the value of adapting insight from CNN to the point cloud world. Point clouds inherently lack topological information so designing a model to recover topology can enrich the representation power of point clouds. To this end, we propose a new neural network module dubbed EdgeConv suitable for CNN-based high-level tasks on point clouds including classification and segmentation. EdgeConv acts on graphs dynamically computed in each layer of the network. It is differentiable and can be plugged into existing architectures. Compared to existing modules operating in extrinsic space or treating each point independently, EdgeConv has several appealing properties: It incorporates local neighborhood information; it can be stacked applied to learn global shape properties; and in multi-layer systems affinity in feature space captures semantic characteristics over potentially long distances in the original embedding. We show the performance of our model on standard benchmarks including ModelNet40, ShapeNetPart, and S3DIS

    Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review

    Full text link
    Recently, the advancement of deep learning in discriminative feature learning from 3D LiDAR data has led to rapid development in the field of autonomous driving. However, automated processing uneven, unstructured, noisy, and massive 3D point clouds is a challenging and tedious task. In this paper, we provide a systematic review of existing compelling deep learning architectures applied in LiDAR point clouds, detailing for specific tasks in autonomous driving such as segmentation, detection, and classification. Although several published research papers focus on specific topics in computer vision for autonomous vehicles, to date, no general survey on deep learning applied in LiDAR point clouds for autonomous vehicles exists. Thus, the goal of this paper is to narrow the gap in this topic. More than 140 key contributions in the recent five years are summarized in this survey, including the milestone 3D deep architectures, the remarkable deep learning applications in 3D semantic segmentation, object detection, and classification; specific datasets, evaluation metrics, and the state of the art performance. Finally, we conclude the remaining challenges and future researches.Comment: 21 pages, submitted to IEEE Transactions on Neural Networks and Learning System

    Permutation Matters: Anisotropic Convolutional Layer for Learning on Point Clouds

    Full text link
    It has witnessed a growing demand for efficient representation learning on point clouds in many 3D computer vision applications. Behind the success story of convolutional neural networks (CNNs) is that the data (e.g., images) are Euclidean structured. However, point clouds are irregular and unordered. Various point neural networks have been developed with isotropic filters or using weighting matrices to overcome the structure inconsistency on point clouds. However, isotropic filters or weighting matrices limit the representation power. In this paper, we propose a permutable anisotropic convolutional operation (PAI-Conv) that calculates soft-permutation matrices for each point using dot-product attention according to a set of evenly distributed kernel points on a sphere's surface and performs shared anisotropic filters. In fact, dot product with kernel points is by analogy with the dot-product with keys in Transformer as widely used in natural language processing (NLP). From this perspective, PAI-Conv can be regarded as the transformer for point clouds, which is physically meaningful and is robust to cooperate with the efficient random point sampling method. Comprehensive experiments on point clouds demonstrate that PAI-Conv produces competitive results in classification and semantic segmentation tasks compared to state-of-the-art methods

    Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes

    Full text link
    We present an Adaptive Octree-based Convolutional Neural Network (Adaptive O-CNN) for efficient 3D shape encoding and decoding. Different from volumetric-based or octree-based CNN methods that represent a 3D shape with voxels in the same resolution, our method represents a 3D shape adaptively with octants at different levels and models the 3D shape within each octant with a planar patch. Based on this adaptive patch-based representation, we propose an Adaptive O-CNN encoder and decoder for encoding and decoding 3D shapes. The Adaptive O-CNN encoder takes the planar patch normal and displacement as input and performs 3D convolutions only at the octants at each level, while the Adaptive O-CNN decoder infers the shape occupancy and subdivision status of octants at each level and estimates the best plane normal and displacement for each leaf octant. As a general framework for 3D shape analysis and generation, the Adaptive O-CNN not only reduces the memory and computational cost, but also offers better shape generation capability than the existing 3D-CNN approaches. We validate Adaptive O-CNN in terms of efficiency and effectiveness on different shape analysis and generation tasks, including shape classification, 3D autoencoding, shape prediction from a single image, and shape completion for noisy and incomplete point clouds
    • …
    corecore