205 research outputs found

    Napodobení a výroba vzhledu pomocí diferencovatelných materiálových modelů

    Get PDF
    Výpočetní deriváty kódu - s kódem - jsou jedním z klíčových aktivátorů revoluce strojového učení. V počítačové grafice umožňuje automatická diferenciace řešit problémy s inverzním renderingem, kde se z jednoho nebo několika vstupních snímků získávají parametry jako je odrazovost objektu, poloha nebo koeficienty rozptylu a absorpce ob- jemu. V této práci zvažujeme problémy s přizpůsobením vzhledu a s výrobou, které lze uvést jako příklady problémů s inverzním renderingem. Zatímco optimalizace založená na gradientu, kterou umožňují diferencovatelné programy, má potenciál přinést velmi dobré výsledky, vyžaduje správné využití. Diferenciovatelný rendering není řešením problémů typu brokovnice. Diskutujeme jak teoretické koncepty, tak praktickou implementaci dife- rencovatelných renderingových algoritmů a ukazujeme, jak se spojují s různými problémy s přizpůsobením vzhledu. 1Computing derivatives of code - with code - is one of the key enablers of the machine learning revolution. In computer graphics, automatic differentiation allows to solve in- verse rendering problems. There, parameters such as an objects reflectance, position, or the scattering- and absorption coefficients of a volume, are recovered from one or several input images. In this work, we consider appearance matching and fabrication problems, that can be cast as instances of inverse rendering problems. While gradient-based opti- mization that is enabled by differentiable programs has the potential to yield very good results, it requires proper handling - differentiable rendering is not a shotgun-type prob- lem solver. We discuss both theoretical concepts and the practical implementation of differentiable rendering algorithms, and show how they connect to different appearance matching problems. 1Katedra softwaru a výuky informatikyDepartment of Software and Computer Science EducationMatematicko-fyzikální fakultaFaculty of Mathematics and Physic

    Accurate and Computational: A review of color reproduction in Full-color 3D printing

    Get PDF
    As functional 3D printing becomes more popular with industrial manufacturing applications, it is time to start discussing high-fidelity appearance reproduction of 3D objects, particularly in faithful colors. To date, there is only limited research on accurate color reproduction and on universal color reproduction method for different color 3D printing materials. To systematically understand colorization principles and color transmission in color 3D printing, an exhaustive literature review is stated to show the state of the art of color reproduction methods for full-color 3D printing, such as optical parameter modeling, colorimetric difference evaluation, computer aided colorization and voxel droplet jetting. Meanwhile, the challenges in developing an accurate color reproduction framework suitable for different printing materials are fully analyzed in this literature review. In full-color 3D printing, coloring, rendering and acquisition constitute the core issues for accurate color reproduction, and their specific concepts are explained in concrete examples. Finally, the future perspectives of a universal color reproduction framework for accurate full-color 3D printing are discussed, which can overcome the limitations of printing materials, combined with computational boundary contoning

    Proceedings of the 2021 DigitalFUTURES

    Get PDF
    This open access book is a compilation of selected papers from 2021 DigitalFUTURES—The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021). The work focuses on novel techniques for computational design and robotic fabrication. The contents make valuable contributions to academic researchers, designers, and engineers in the industry. As well, readers encounter new ideas about understanding material intelligence in architecture

    Modeling, Design and Demonstration of 1 µm Wide Low Resistance Panel Redistribution Layer Technology for High Performance Computing Applications

    Get PDF
    Since 2010, heterogeneous integration (HI) of multiple integrated circuits (ICs) on to a package substrate has become one of the most popular solutions to improve system performance and miniaturization. This HI has emerged to continue Moore’s Law scaling to support high performance computing (HPC) applications such as artificial intelligence, autonomous driving, 5G, cloud computing and wearable devices. Package substrate technology has only just begun to become a huge enabler to system scaling, beyond Moore’s Law, in terms of overall miniaturization, high bandwidth performance and high density of interconnections between heterogeneous dies to enable more operations per second. Redistribution layer (RDL) technology is the main component to interconnecting these ICs on a single package to scale beyond Moore’s Law. Examining RDL technology further it is observed that only back-end-of-line (BEOL) RDL fabricated on silicon can provide the interconnections needed for a high-performance system. However, this technology has reached a fundamental limitation due to the high resistance and capacitance of BEOL RDL that limits the further scaling of system performance. The objectives of this research are to address the scaling limitations of multi-layer polymer RDL down to 1µm and beyond. This research focuses on addressing these challenges by: (A) Electrical Design and Modeling of multi-layer polymer RDL for 4x lower resistance and 4x higher bandwidth than silicon BEOL RDL, (B) Design and demonstration of novel photoresist materials for scaling of polymer RDL well below 1µm using low-cost large panel-based tools and processes, (C) Fundamental evaluation of current substrate integration impacts on the novel photoresist material developed for scaling of polymer RDL, (D) Scaling of the semi-additive process (SAP) that is utilized in the panel-based RDL through fundamental material and process innovations.Ph.D

    Digital fabrication of custom interactive objects with rich materials

    Get PDF
    As ubiquitous computing is becoming reality, people interact with an increasing number of computer interfaces embedded in physical objects. Today, interaction with those objects largely relies on integrated touchscreens. In contrast, humans are capable of rich interaction with physical objects and their materials through sensory feedback and dexterous manipulation skills. However, developing physical user interfaces that offer versatile interaction and leverage these capabilities is challenging. It requires novel technologies for prototyping interfaces with custom interactivity that support rich materials of everyday objects. Moreover, such technologies need to be accessible to empower a wide audience of researchers, makers, and users. This thesis investigates digital fabrication as a key technology to address these challenges. It contributes four novel design and fabrication approaches for interactive objects with rich materials. The contributions enable easy, accessible, and versatile design and fabrication of interactive objects with custom stretchability, input and output on complex geometries and diverse materials, tactile output on 3D-object geometries, and capabilities of changing their shape and material properties. Together, the contributions of this thesis advance the fields of digital fabrication, rapid prototyping, and ubiquitous computing towards the bigger goal of exploring interactive objects with rich materials as a new generation of physical interfaces.Computer werden zunehmend in Geräten integriert, mit welchen Menschen im Alltag interagieren. Heutzutage basiert diese Interaktion weitgehend auf Touchscreens. Im Kontrast dazu steht die reichhaltige Interaktion mit physischen Objekten und Materialien durch sensorisches Feedback und geschickte Manipulation. Interfaces zu entwerfen, die diese Fähigkeiten nutzen, ist allerdings problematisch. Hierfür sind Technologien zum Prototyping neuer Interfaces mit benutzerdefinierter Interaktivität und Kompatibilität mit vielfältigen Materialien erforderlich. Zudem sollten solche Technologien zugänglich sein, um ein breites Publikum zu erreichen. Diese Dissertation erforscht die digitale Fabrikation als Schlüsseltechnologie, um diese Probleme zu adressieren. Sie trägt vier neue Design- und Fabrikationsansätze für das Prototyping interaktiver Objekte mit reichhaltigen Materialien bei. Diese ermöglichen einfaches, zugängliches und vielseitiges Design und Fabrikation von interaktiven Objekten mit individueller Dehnbarkeit, Ein- und Ausgabe auf komplexen Geometrien und vielfältigen Materialien, taktiler Ausgabe auf 3D-Objektgeometrien und der Fähigkeit ihre Form und Materialeigenschaften zu ändern. Insgesamt trägt diese Dissertation zum Fortschritt der Bereiche der digitalen Fabrikation, des Rapid Prototyping und des Ubiquitous Computing in Richtung des größeren Ziels, der Exploration interaktiver Objekte mit reichhaltigen Materialien als eine neue Generation von physischen Interfaces, bei

    Micropumps for liquid transport inside biomimetic and microfabricated devices

    Get PDF
    The micropump is one of the most important parts of micro Total Analysis Systems. In this thesis, three types of pumps, (syringe pump, capillary pump and diffusion pump) are utilized for microfluidic transport inside biomimetic and microfabricated devices. It’s confirmed that syringe pump can be efficient access in fluidic transport for wide range of microdevices, such as the 3D helical silicone tubing microreactor containing smooth channel surface, the Y-structured microchannel containing grooved-shaped sidewall, and PDMS/Polymer microchips microfabricated from photolithography, qualified for accurate flow rate control, microdroplet formation and multi-phage flow, anticorrosive assay and leakage test, etc. In addition, another two types of self-activated micropumps: the capillary micropump and the diffusion micropump are also applied for liquid transport through different microdevices in this thesis. It’s found here that, the capillary micropump can be efficient approach for self-activated liquid transport inside 2.5D microchip for potential Point of Care applications, while the diffusion micropump can produce much more homogeneous flow than previously reported. The microfluidic transport properties of the diffusion micropump in biomimetic microdevice and 3D helix tubing microdevice is also characterized. Compared with the mainstream of traditional micropumps, I find diffusion micropump displays unique superiority in integrating a lot of advantages altogether, including much smaller size, dramatically simple structure, free of external power consumption, simple fabricating procedure, strong micro fluidic transportation ability, homogeneous flowing velocity over long distance, resistant to adverse external condition like high temperature, easiness of microdevice integration and much lower price.Die Mikropumpe ist eines der wichtigsten Komponenten eines miniaturisierten totalen Analysensystems. In dieser Arbeit werden drei Arten von Pumpen, Spritzenpumpe, Kapillarität und Diffusionspumpe beschrieben und angewandt für mikrofluidischen Transport in biomimetischen und mikrofabrizierten Strukturen. Es wird gezeigt, dass Spritzenpumpen für verschiedenartige mikrofluidische Chips eingesetzt werden können, zum Beispiel für den 3-dimensionalen verschlungenen Reaktor aus Silikonschlauch, für den Y-förmigen Reaktor mit steilen Seitenwänden, und photolithographischen Mikrochips aus PDMS-Polymer, mit kontrolliertem Durchfluss, für die Formung von Tröpfchen und für Mehrphasen-Fluss, für Antikorrosions-Test und Leck-Test, etc. Ausserdem werden in dieser Dissertation zwei weitere Typen von autonomen Pumpen eingesetzt: die Kapillarität und die Diffusions-Mikropumpe. Es stellte sich heraus, dass Pumpen durch Kapillarkraft in 2.5- dimesnsionalen Mikrochips für zukünftige klinische Anwendungen verwendet werden können, während die Diffusionspumpe einen weit gleichmäßigeren Fluss erzielt als bisher beschrieben. Mikrofluidische Transporteigenschaften der Diffusionspumpe in biomimetischen Strukturen und in 3-dimensionalen verschlungenen Strukturen werden beschrieben. Ich denke, im Vergleich zu den meisten herkömmlichen Mikropumpen zeigt die Diffusionspumpe klare Vorteile, sie ist klein, einfach gebaut, benötigt keine externe Stromversorgung, ist einfach herzustellen, funktioniert einwandfrei über längere Strecken, ist pulsationsfrei, ist unabhängig von äußeren Einflüssen wie hohe Temperatur, kann einfach integriert werden und zu niedrigerem Preis

    Analysis of 3D printed NDFeB polymer bonded and organic based magnets

    Get PDF
    Additive manufacturing (AM), or commonly known as 3D printing, has introduced to the manufacturing and commercial sectors novel ways of reducing production times, decreasing material waste, and enabling end products with multi-material configuration and complex geometric designs. From industrial scale to customer-based printers, AM has revolutionized the approach to manufacturing, prototyping, and designing in the field of medical, automotive, aerospace, biomedical, electronics and customizable products. Recently, additive manufacturing has crossed over to the area of applications in magnetism due to the economic push for the miniaturization of electronic and mechanical devices, reduction in production costs and material & design flexibility. The goal of this research is to add to the groundwork for the additive manufacturing with NdFeB bonded and organic based magnetic materials. Development of 3D printing methods will open doors to new applications in magnetism and will lead to significant opportunities in its applications. NdFeB bonded composites and organic based magnetic materials will be converted to feedstock and implemented into the 3D printer to fabricate magnetic objects with complex and unique shapes. The molecular, electronic and structural properties of these materials will be characterized using various analytical and physical methods and the results will be compared

    Hybrid integration of chipscale photonic devices using accurate transfer printing methods

    Get PDF
    Transfer printing is becoming widely adopted as a back-end process for the hybrid integration of photonic and electronic devices. Integration of membrane components, with micrometer-scale footprints and sub-micron waveguide dimensions, imposes strict performance requirements on the process. In this review, we present an overview of transfer printing for integrated photonics applications, covering materials and fabrication process considerations, methods for efficient optical coupling, and high-accuracy inter-layer alignment. We present state-of-the-art integration demonstrations covering optical sources and detectors, quantum emitters, sensors, and opto-mechanical devices. Finally, we look toward future developments in the technology that will be required for dense multi-materials integration at wafer scales

    Collaborative Localization and Mapping for Autonomous Planetary Exploration : Distributed Stereo Vision-Based 6D SLAM in GNSS-Denied Environments

    Get PDF
    Mobile robots are a crucial element of present and future scientific missions to explore the surfaces of foreign celestial bodies such as Moon and Mars. The deployment of teams of robots allows to improve efficiency and robustness in such challenging environments. As long communication round-trip times to Earth render the teleoperation of robotic systems inefficient to impossible, on-board autonomy is a key to success. The robots operate in Global Navigation Satellite System (GNSS)-denied environments and thus have to rely on space-suitable on-board sensors such as stereo camera systems. They need to be able to localize themselves online, to model their surroundings, as well as to share information about the environment and their position therein. These capabilities constitute the basis for the local autonomy of each system as well as for any coordinated joint action within the team, such as collaborative autonomous exploration. In this thesis, we present a novel approach for stereo vision-based on-board and online Simultaneous Localization and Mapping (SLAM) for multi-robot teams given the challenges imposed by planetary exploration missions. We combine distributed local and decentralized global estimation methods to get the best of both worlds: A local reference filter on each robot provides real-time local state estimates required for robot control and fast reactive behaviors. We designed a novel graph topology to incorporate these state estimates into an online incremental graph optimization to compute global pose and map estimates that serve as input to higher-level autonomy functions. In order to model the 3D geometry of the environment, we generate dense 3D point cloud and probabilistic voxel-grid maps from noisy stereo data. We distribute the computational load and reduce the required communication bandwidth between robots by locally aggregating high-bandwidth vision data into partial maps that are then exchanged between robots and composed into global models of the environment. We developed methods for intra- and inter-robot map matching to recognize previously visited locations in semi- and unstructured environments based on their estimated local geometry, which is mostly invariant to light conditions as well as different sensors and viewpoints in heterogeneous multi-robot teams. A decoupling of observable and unobservable states in the local filter allows us to introduce a novel optimization: Enforcing all submaps to be gravity-aligned, we can reduce the dimensionality of the map matching from 6D to 4D. In addition to map matches, the robots use visual fiducial markers to detect each other. In this context, we present a novel method for modeling the errors of the loop closure transformations that are estimated from these detections. We demonstrate the robustness of our methods by integrating them on a total of five different ground-based and aerial mobile robots that were deployed in a total of 31 real-world experiments for quantitative evaluations in semi- and unstructured indoor and outdoor settings. In addition, we validated our SLAM framework through several different demonstrations at four public events in Moon and Mars-like environments. These include, among others, autonomous multi-robot exploration tests at a Moon-analogue site on top of the volcano Mt. Etna, Italy, as well as the collaborative mapping of a Mars-like environment with a heterogeneous robotic team of flying and driving robots in more than 35 public demonstration runs

    21st century manufacturing machines: Design, fabrication and controls

    Get PDF
    Advances in nanotechnology, microfabrication and new manufacturing processes, the revolution of open electronics, and the emerging internet of things will influence the design, manufacture, and control of manufacturing machines in the future. For instance, miniaturization will change manufacturing processes; additive and rapid prototyping will change the production of machine components; and open electronics offer a platform for new control architectures for manufacturing systems that are open, modular, and easy to reconfigure. Combined with the latest trends in cyber-physical systems and the internet of things, open architecture controllers for CNC systems can become platforms, oriented for numerical control as a service (NCaaS) and manufacturing as a service, tailored to the creation of cyber-manufacturing networks of shared resources and web applications. With this potential in mind, this research presents new design-for-fabrication methodologies and control strategies to facilitate the creation of next generation machine tools. It provides a discussion and examples of the opportunities that the present moment offers. The first portion of this dissertation focuses on the design of complex 3D MEMS machines realized from conventional 2.5D microfabrication processes. It presents an analysis of an example XYZ-MEMS parallel kinematics stage as well as of designs of the individual components of the manipulator, integrated into a design approach for PK-XYZ-MEMS stages. It seems likely that this design-for-fabrication methodology will enable higher functionality in MEMS micromachines and result in new devices that interact, in three full dimensions, with their surroundings. Novel and innovative research exemplifies the opportunities new and economical manufacturing technologies offer for the design and fabrication of modern machine tools. The second portion of this dissertation describes the demonstration of a new flexural joint designed with both traditional and additive manufacturing processes. It extrapolates principles based on the design of this joint that alleviate the effects of low accuracy and poor surface finishing, anisotropy, reductions in material properties of components, and small holding forces. Based on these results, the next section presents case examples of the construction of mesoscale devices and machine components using multilayered composites and hybrid flexures for precision engineering, medical training, and machine tools for reduced life applications and tests design-for-fabrication strategies. The results suggest the strategies effectively address existing problems, providing a repertory of creative solutions applicable to the design of devices with hybrid flexures. The implications for medical industry, micro robotics, soft robotics, flexible electronics, and metrology systems are positive. Chapter number five examines to positive impact of open architectures of control for CNC systems, given the current availability of micro-processing power and open-source electronics. It presents a new modular architecture controller based on open-source electronics. This component-based approach offers the possibility of adding micro-processing units and an axis of motion without modification of the control programs. This kind of software and hardware modularity is important for the reconfiguration of new manufacturing units. The flexibility of this architecture makes it a convenient testbed for the implementation of new control algorithms on different electromechanical systems. This research provides general purpose, open architecture for the design of a CNC system based on open electronics and detailed information to experiment with these platforms. This dissertation’s final chapter describes how applying the latest trends to the classical concepts of modular and open architecture controllers for CNC systems results in a control platform, oriented for numerical control as a service (NCaaS) and manufacturing as a service (MaaS), tailored to the creation of cyber-manufacturing networks of shared resources and web applications. Based on this technology, this chapter introduces new manufacturing network for numerical control (NC) infrastructure, provisioned and managed over the internet. The proposed network architecture has a hardware, a virtualization, an operating system, and a network layer. With a new operating system necessary to service and virtualize manufacturing resources, and a micro service architecture of manufacturing nodes and assets, this network is a new paradigm in cloud manufacturing
    corecore