17,303 research outputs found

    Automatic Test Generation for Data-Flow Reactive Systems with time constraints

    Get PDF
    International audienceIn this paper, we handle the problem of conformance testing for data-flow critical systems with time constraints. We present a formal model (Variable Driven Timed Automata) adapted for such systems inspired from timed automata using variables as inputs and outputs, and clocks. In this model, we consider urgency and the possibility to fire several transitions instantaneously. We present a conformance relation for this model and we propose a test generation method using a test purpose approach, based on a region graph transformation of the specification

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    A Model-Derivation Framework for Software Analysis

    Full text link
    Model-based verification allows to express behavioral correctness conditions like the validity of execution states, boundaries of variables or timing at a high level of abstraction and affirm that they are satisfied by a software system. However, this requires expressive models which are difficult and cumbersome to create and maintain by hand. This paper presents a framework that automatically derives behavioral models from real-sized Java programs. Our framework builds on the EMF/ECore technology and provides a tool that creates an initial model from Java bytecode, as well as a series of transformations that simplify the model and eventually output a timed-automata model that can be processed by a model checker such as UPPAAL. The framework has the following properties: (1) consistency of models with software, (2) extensibility of the model derivation process, (3) scalability and (4) expressiveness of models. We report several case studies to validate how our framework satisfies these properties.Comment: In Proceedings MARS 2017, arXiv:1703.0581

    A Model-Derivation Framework for Software Analysis

    Get PDF
    Model-based verification allows to express behavioral correctness conditions like the validity of execution states, boundaries of variables or timing at a high level of abstraction and affirm that they are satisfied by a software system. However, this requires expressive models which are difficult and cumbersome to create and maintain by hand. This paper presents a framework that automatically derives behavioral models from real-sized Java programs. Our framework builds on the EMF/ECore technology and provides a tool that creates an initial model from Java bytecode, as well as a series of transformations that simplify the model and eventually output a timed-automata model that can be processed by a model checker such as UPPAAL. The framework has the following properties: (1) consistency of models with software, (2) extensibility of the model derivation process, (3) scalability and (4) expressiveness of models. We report several case studies to validate how our framework satisfies these properties.Comment: In Proceedings MARS 2017, arXiv:1703.0581

    Efficient Emptiness Check for Timed B\"uchi Automata (Extended version)

    Full text link
    The B\"uchi non-emptiness problem for timed automata refers to deciding if a given automaton has an infinite non-Zeno run satisfying the B\"uchi accepting condition. The standard solution to this problem involves adding an auxiliary clock to take care of the non-Zenoness. In this paper, it is shown that this simple transformation may sometimes result in an exponential blowup. A construction avoiding this blowup is proposed. It is also shown that in many cases, non-Zenoness can be ascertained without extra construction. An on-the-fly algorithm for the non-emptiness problem, using non-Zenoness construction only when required, is proposed. Experiments carried out with a prototype implementation of the algorithm are reported.Comment: Published in the Special Issue on Computer Aided Verification - CAV 2010; Formal Methods in System Design, 201

    Test Derivation from Timed Automata

    Get PDF
    A real-time system is a discrete system whose state changes occur in real-numbered time [AH97]. For testing real-time systems, specification languages must be extended with constructs for expressing real-time constraints, the implementation relation must be generalized to consider the temporal dimension, and the data structures and algorithms used to generate tests must be revised to operate on a potentially infinite set of states

    Better abstractions for timed automata

    Full text link
    We consider the reachability problem for timed automata. A standard solution to this problem involves computing a search tree whose nodes are abstractions of zones. These abstractions preserve underlying simulation relations on the state space of the automaton. For both effectiveness and efficiency reasons, they are parametrized by the maximal lower and upper bounds (LU-bounds) occurring in the guards of the automaton. We consider the aLU abstraction defined by Behrmann et al. Since this abstraction can potentially yield non-convex sets, it has not been used in implementations. We prove that aLU abstraction is the biggest abstraction with respect to LU-bounds that is sound and complete for reachability. We also provide an efficient technique to use the aLU abstraction to solve the reachability problem.Comment: Extended version of LICS 2012 paper (conference paper till v6). in Information and Computation, available online 27 July 201

    Effective representation of RT-LOTOS terms by finite time petri nets

    Get PDF
    The paper describes a transformational approach for the specification and formal verification of concurrent and real-time systems. At upper level, one system is specified using the timed process algebra RT-LOTOS. The output of the proposed transformation is a Time Petri net (TPN). The paper particularly shows how a TPN can be automatically constructed from an RT-LOTOS specification using a compositionally defined mapping. The proof of the translation consistency is sketched in the paper and developed in [1]. The RT-LOTOS to TPN translation patterns formalized in the paper are being implemented. in a prototype tool. This enables reusing TPNs verification techniques and tools for the profit of RT-LOTOS
    • …
    corecore