15 research outputs found

    at the 14th Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2011)

    Get PDF
    Technical Report TR-2011/1, Department of Languages and Computation. University of Almeria November 2011. Joaquín Cañadas, Grzegorz J. Nalepa, Joachim Baumeister (Editors)The seventh workshop on Knowledge Engineering and Software Engineering (KESE7) was held at the Conference of the Spanish Association for Artificial Intelligence (CAEPIA-2011) in La Laguna (Tenerife), Spain, and brought together researchers and practitioners from both fields of software engineering and artificial intelligence. The intention was to give ample space for exchanging latest research results as well as knowledge about practical experience.University of Almería, Almería, Spain. AGH University of Science and Technology, Kraków, Poland. University of Würzburg, Würzburg, Germany

    On Enabling Integrated Process Compliance with Semantic Constraints in Process Management Systems

    Get PDF
    Key to broad use of process management systems (PrMS) in practice is their ability to foster and ease the implementation, execution, monitoring, and adaptation of business processes while still being able to ensure robust and error-free process enactment. To meet these demands a variety of mechanisms has been developed to prevent errors at the structural level (e.g., deadlocks). In many application domains, however, processes often have to comply with business level rules and policies (i.e., semantic constraints) as well. Hence, to ensure error-free executions at the semantic level, PrMS need certain control mechanisms for validating and ensuring the compliance with semantic constraints. In this paper, we discuss fundamental requirements for a comprehensive support of semantic constraints in PrMS. Moreover, we provide a survey on existing approaches and discuss to what extent they are able to meet the requirements and which challenges still have to be tackled. In order to tackle the particular challenge of providing integrated compliance support over the process lifecycle, we introduce the SeaFlows framework. The framework introduces a behavioural level view on processes which serves a conceptual process representation for constraint specification approaches. Further, it provides general compliance criteria for static compliance validation but also for dealing with process changes. Altogether, the SeaFlows framework can serve as formal basis for realizing integrated support of semantic constraints in PrMS

    On exposing strategic and structural mismatches between business and information systems: misalignment symptom detection based on enterprise architecture model analysis = Stratégiai és strukturális összehangolási zavarok feltárása az üzleti és informatikai területek között: összehangolási zavarok tüneteinek azonosítása vállalati architektúra modellek elemzésével

    Get PDF
    One of the most important issues on information systems (IS) research is the need to align business with information systems and information technology (IT). Since information systems facilitate the success of business strategies, the importance of business-IT (or strategic) alignment is unquestionable. While organisations address alignment achievement, they are continually suffering from misalignments. These difficulties (the misalignments) encumber the achievement of alignment, and lead us to the phenomenon of misalignment. This Ph.D. dissertation deals with the concept of misalignment, with special attention on enterprise architecture (EA)-based analytical potential. The main purpose of the proposed research is to analyse strategic misalignment between the business dimension and the information systems dimension. The problem of business-IT alignment is translated into the aspects of enterprise architecture. The study aims to accomplish an EA-based, systematic analysis of mismatches between business and information systems

    SeaFlows – A Compliance Checking Framework for Supporting the Process Lifecycle

    Get PDF
    Compliance-awareness is undoubtedly of utmost importance for companies nowadays. Even though an automated approach to compliance checking and enforcement has been advocated in recent literature as a means to tame the high costs for compliance-awareness, the potential of automated mechanisms for supporting business process compliance is not yet depleted. Business process compliance deals with the question whether business processes are designed and executed in harmony with imposed regulations. In this thesis, we propose a compliance checking framework for automating business process compliance verification within process management systems (PrMSs). Such process-aware information systems constitute an ideal environment for the systematic integration of automated business process compliance checking since they bring together different perspectives on a business process and provide access to process data. The objective of this thesis is to devise a framework that enhances PrMSs with compliance checking functionality. As PrMSs enable both the design and the execution of business processes, the designated compliance checking framework must accommodate mechanisms to support these different phases of the process lifecycle. A compliance checking framework essentially consists of two major building blocks: a compliance rule language to capture compliance requirements in a checkable manner and compliance checking mechanisms for verification of process models and process instances. Key to the practical application of a compliance checking framework will be its ability to provide comprehensive and meaningful compliance diagnoses. Based on the requirements analysis and meta-analyses, we developed the SeaFlows compliance checking framework proposed in this thesis. We introduce the compliance rule graph (CRG) language for modeling declarative compliance rules. The language provides modeling primitives with a notation based on nodes and edges. A compliance rule is modeled by defining a pattern of activity executions activating a compliance rule and consequences that have to apply once a rule becomes activated. In order to enable compliance verification of process models and process instances, the CRG language is operationalized. Key to this approach is the exploitation of the graph structure of CRGs for representing compliance states of the respective CRGs in a transparent and interpretable manner. For that purpose, we introduce execution states to mark CRG nodes in order to indicate which parts of the CRG patterns can be observed in a process execution. By providing rules to alter the markings when a new event is processed, we enable to update the compliance state for each observed event. The beauty of our approach is that both design and runtime can be supported using the same mechanisms. Thus, no transformation of compliance rules in different representations for process model verification or for compliance monitoring becomes necessary. At design time, the proposed approach can be applied to explore a process model and to detect which compliance states with respect to imposed CRGs a process model is able to yield. At runtime, the effective compliance state of process instances can be monitored taking also the future predefined in the underlying process model into account. As compliance states are encoded based on the CRG structure, fine-grained and intelligible compliance diagnoses can be derived in each detected compliance state. Specifically, it becomes possible to provide feedback not only on the general enforcement of a compliance rule but also at the level of particular activations of the rule contained in a process. In case of compliance violations, this can explain and pinpoint the source of violations in a process. In addition, measures to satisfy a compliance rule can be easily derived that can be seized for providing proactive support to comply. Altogether, the SeaFlows compliance checking framework proposed in this thesis can be embedded into an overall integrated compliance management framework

    A Framework for Specifying Business Rules Based on Logic with a Syntax Close to Natural Language

    Get PDF
    The systematic interaction of software developers with the business domain experts that are usually no software developers is crucial to software system maintenance and creation and has surfaced as the big challenge of modern software engineering. Existing frameworks promoting the typical programming languages with artificial syntax are suitable to be processed by computers but do not cater to domain experts, who are used to documents written in natural language as a means of interaction.Other frameworks that claim to be fully automated, such as those using natural language processing, are too imprecise to handle the typical requirements documents written in heterogeneous natural language flavours. In this thesis, a framework is proposed that can support the specification of business rules that is, on the one hand, understandable for nonprogrammers and on the other hand semantically founded, which enables computer processability. This is achieved by the novel language Adaptive Business Process and Rule Integration Language (APRIL). Specifications in APRIL can be written in a style close to natural language and are thus suitable for humans, which was empirically evaluated with a representative group of test persons. A useful and uncommon feature of APRIL is the ability to define reusable abstract mixfix operators as sentence patterns, that can mimic natural language. The semantic underpinning of the mixfix operators is achieved by customizable atomic formulas, allowing to tailor APRIL to specific domains. Atomic formulas are underpinned by a denotational semantics, which is based on Tempura (executable subset of Interval Temporal Logic (ITL)) to describe behaviour and the Object Constraint Language (OCL) to describe invariants and pre- and postconditions. APRIL statements can be used as the basis for automatically generating test code for software systems. An additional aspect of enhancing the quality of specification documents comes with a novel formal method technique (ISEPI) applicable to behavioural business rules semantically based on Propositional Interval Temporal Logic (PITL) and complying with the newly discovered 2-to-1 property. This work discovers how the ISE subset of ISEPI can be used to express complex behavioural business rules in a more concise and understandable way. The evaluation of ISE is done by an example specification taken from the car industry describing system behaviour, using the tools MONA and PITL2MONA. Finally, a methodology is presented that helps to guide a continuous transformation starting from purely natural language business rule specification to the APRIL specification which can then be transformed to test code. The methodologies, language concepts, algorithms, tools and techniques devised in this work are part of the APRIL-framework

    On the symbiosis between conceptual modeling and ontology engineering : recommendation-based conceptual modeling

    Get PDF
    Within an enterprise, different conceptual models, such as process, data, and goal models, are created by various stakeholders. These models are fundamentally based on similar underlying enterprise (domain) concepts, but they have a different focus, are represented using different modeling languages, take different viewpoints, utilize different terminology, and are used to develop different enterprise artefacts (such as documents, software, databases, etc.); therefore, they typically lack consistency and alignment. Another issue is that modelers have different vocabulary selections and different modeling styles. As a result, the enterprise can find itself accumulating a pile of models which cover similar aspects in different manners. Those models are not machine-readable and cannot be processed automatically. Enterprise-Specific Ontologies (ESOs) aim to solve this problem by serving as a reference during the conceptual model creation. Using such a shared semantic repository makes conceptual models semantically aligned and facilitates model integration. However, managing those ontologies is complicated; an enterprise is an evolving entity, and as it changes, the ESO might become outdated. During the years of research dedicated to this dissertation, the Recommendation-Based Conceptual Modeling and Ontology Evolution (CMOE+) framework was developed. This framework establishes a symbiotic relationship between the Ontology engineering and the Conceptual modeling fields. CMOE+ consists of two cycles: the Ontology Evolution cycle and the Conceptual Modeling cycle. The Ontology Evolution cycle is responsible for setting up the initial version of the ESO and updating it as the knowledge within the enterprise evolves. Additionally, this cycle encapsulates recommendation services to perform ontology look-up and to present the most relevant ESO concepts in support of the modeler. The Conceptual Modeling cycle is responsible for the creation of conceptual models in different modeling languages based on the ESO. This cycle is also concerned with the quality evaluation of the created models. CMOE+ was developed based on requirements identified as a result of a literature review and a case study. The development process follows the Design Science Research Methodology (DSRM). After the initial version of CMOE+ was put forward, our focus was narrowed towards the recommendation-based conceptual modeling part of CMOE+, and we continued to gradually improve the framework in iterations until it reached its current state. The Ontology Evolution Cycle is not fully addressed within the scope of this dissertation. In order to demonstrate the performance and usability of CMOE+, it was exemplified for process modeling using BPMN and goal modeling using i*. This thesis presents a detailed instantiation, and explains steps to be performed in order to instantiate CMOE+ for other modeling languages. In order to evaluate the process modeling instance of CMOE+, a CMOE+BPMN tool was implemented. This tool incorporates a BPMN modeler, facilitates storage and access of the ESO, and includes all algorithms functioning within CMOE+ for the BPMN modeling language (as some of the algorithms are language dependent). Next, CMOE+ was exemplified using the i* goal modeling language. Finally, we demonstrated the ability of CMOE+ to perform alignment between i* and BPMN models, in order to show that CMOE+ is indeed beneficial in achieving interoperability among models created in different modeling languages and covering distinct aspects of the enterprise

    A configuration-based domain-specific rule generation framework for process model customization

    Get PDF
    In today’s changing world, there is an ever-increasing demand and need for software reuse in applications, where the process model needs to be reused in different applications in a domain-specific environment. The process model is required to adapt and implement changes promptly at run-time, in response of the end-user configuration requirements. Furthermore, reusability is emerging strongly as a necessary underlying capability, particularly for customization of business in a dynamic environment where end-users can select their requirements to achieve a specific goal. Such adaptations are in general, performed by non-technical end-users which can lead to losing a significant number of person-days and which can also open up possibilities to introduce errors into the system. These scenarios call for - indeed cry out for - a system with a configurable and customizable business process, operable by users with limited technical expertise. Research aims to provide a framework for generating the rule language and configuring domain constraints. This framework builds upon the core idea of Software Product Lines Engineering (SPLE) and Model-Driven Architecture (MDA). The SPLE provides a platform that includes the variability model. Variability models offer features where end-users can select features and customize possible changes in the domain template, which is the container for domain and process models. The user selects their requirements as a feature from feature models and generates rules from domain models using MDA. Then, the generated rules are translated from a high-level domain model, based on the requirements of the end-user. On the other hand, the weaving model is responsible for reflecting activation and de-activation of features of variabilities in the domain template. The usability of the proposed framework is evaluated with a user study in the area of Digital Content Technology. The results demonstrate that usability improvements can be achieved by using the proposed techniques. The framework can be used to support semi-automatic configuration that is efficient, effective and satisfactory

    A NEW ILP SYSTEM FOR MODEL TRANSFORMATION BY EXAMPLES

    Get PDF
    corecore