5,125 research outputs found

    A Graph Model for Pattern-Sensitive Faults in Random Access Memories

    Full text link

    Memory Fault Simulator for Static-Linked Faults

    Get PDF
    Static linked faults are considered an interesting class of memory faults. Their capability of influencing the behavior of other faults causes the hiding of the fault effect and makes test algorithm design and validation a very complex task. This paper presents a memory fault simulator architecture targeting the full set of linked fault

    Memory read faults: taxonomy and automatic test generation

    Get PDF
    This paper presents an innovative algorithm for the automatic generation of March tests. The proposed approach is able to generate an optimal March test for an unconstrained set of memory faults in very low computation time. Moreover, we propose a new complete taxonomy for memory read faults, a class of faults never carefully addressed in the past

    Validation & Verification of an EDA automated synthesis tool

    Get PDF
    Reliability and correctness are two mandatory features for automated synthesis tools. To reach the goals several campaigns of Validation and Verification (V&V) are needed. The paper presents the extensive efforts set up to prove the correctness of a newly developed EDA automated synthesis tool. The target tool, MarciaTesta, is a multi-platform automatic generator of test programs for microprocessors' caches. Getting in input the selected March Test and some architectural details about the target cache memory, the tool automatically generates the assembly level program to be run as Software Based Self-Testing (SBST). The equivalence between the original March Test, the automatically generated Assembly program, and the intermediate C/C++ program have been proved resorting to sophisticated logging mechanisms. A set of proved libraries has been generated and extensively used during the tool development. A detailed analysis of the lessons learned is reporte

    An Optimal Algorithm for Detecting Pattern Sensitive Faults in Semiconductor Random Access Memories

    Get PDF
    Random-access memory (RAM) testing to detect unrestricted pattern-sensitive faults (PSFs) is impractical due to the size of the memory checking sequence required. A formal model for restricted PSFs in RAMs called adjacent-pattern interference faults (APIFs) is presented. A test algorithm capable of detecting APIFs in RAMs requiring a minimum number of memory operations is then developed

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    Parallel Testing for Pattern Sensitive Faults in Semiconductor Random Access Memory

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratorySemiconductor Research Corporation / SRC RSCH 84-06-049-

    Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    Get PDF
    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified
    • 

    corecore