4,240 research outputs found

    Graph-based Household Matching for Linking Census Data

    Get PDF
    Historical censuses consist of individual facts about a community. It provides knowledge concerned with the nation’s population. These data apply the reconstruction features of a specific period to trace their ancestors and families changes over time. Linking census data is a difficult task as common names, data quality and household changes over time. During the decades, a household may split multiple households due to marriage or move to another household. This paper proposes a graph-based approach to link households, which takes the relationship between household members. Using individual record linking results, the proposed method builds household graphs, so that the matches are determined by attribute similarity and records relationship similarity. According to the experimental results, the proposed method reaches an F-score of 0.974on Ireland Census data, outperforming all alternative methods being compared

    Advanced Methods for Entity Linking in the Life Sciences

    Get PDF
    The amount of knowledge increases rapidly due to the increasing number of available data sources. However, the autonomy of data sources and the resulting heterogeneity prevent comprehensive data analysis and applications. Data integration aims to overcome heterogeneity by unifying different data sources and enriching unstructured data. The enrichment of data consists of different subtasks, amongst other the annotation process. The annotation process links document phrases to terms of a standardized vocabulary. Annotated documents enable effective retrieval methods, comparability of different documents, and comprehensive data analysis, such as finding adversarial drug effects based on patient data. A vocabulary allows the comparability using standardized terms. An ontology can also represent a vocabulary, whereas concepts, relationships, and logical constraints additionally define an ontology. The annotation process is applicable in different domains. Nevertheless, there is a difference between generic and specialized domains according to the annotation process. This thesis emphasizes the differences between the domains and addresses the identified challenges. The majority of annotation approaches focuses on the evaluation of general domains, such as Wikipedia. This thesis evaluates the developed annotation approaches with case report forms that are medical documents for examining clinical trials. The natural language provides different challenges, such as similar meanings using different phrases. The proposed annotation method, AnnoMap, considers the fuzziness of natural language. A further challenge is the reuse of verified annotations. Existing annotations represent knowledge that can be reused for further annotation processes. AnnoMap consists of a reuse strategy that utilizes verified annotations to link new documents to appropriate concepts. Due to the broad spectrum of areas in the biomedical domain, different tools exist. The tools perform differently regarding a particular domain. This thesis proposes a combination approach to unify results from different tools. The method utilizes existing tool results to build a classification model that can classify new annotations as correct or incorrect. The results show that the reuse and the machine learning-based combination improve the annotation quality compared to existing approaches focussing on the biomedical domain. A further part of data integration is entity resolution to build unified knowledge bases from different data sources. A data source consists of a set of records characterized by attributes. The goal of entity resolution is to identify records representing the same real-world entity. Many methods focus on linking data sources consisting of records being characterized by attributes. Nevertheless, only a few methods can handle graph-structured knowledge bases or consider temporal aspects. The temporal aspects are essential to identify the same entities over different time intervals since these aspects underlie certain conditions. Moreover, records can be related to other records so that a small graph structure exists for each record. These small graphs can be linked to each other if they represent the same. This thesis proposes an entity resolution approach for census data consisting of person records for different time intervals. The approach also considers the graph structure of persons given by family relationships. For achieving qualitative results, current methods apply machine-learning techniques to classify record pairs as the same entity. The classification task used a model that is generated by training data. In this case, the training data is a set of record pairs that are labeled as a duplicate or not. Nevertheless, the generation of training data is a time-consuming task so that active learning techniques are relevant for reducing the number of training examples. The entity resolution method for temporal graph-structured data shows an improvement compared to previous collective entity resolution approaches. The developed active learning approach achieves comparable results to supervised learning methods and outperforms other limited budget active learning methods. Besides the entity resolution approach, the thesis introduces the concept of evolution operators for communities. These operators can express the dynamics of communities and individuals. For instance, we can formulate that two communities merged or split over time. Moreover, the operators allow observing the history of individuals. Overall, the presented annotation approaches generate qualitative annotations for medical forms. The annotations enable comprehensive analysis across different data sources as well as accurate queries. The proposed entity resolution approaches improve existing ones so that they contribute to the generation of qualitative knowledge graphs and data analysis tasks

    Record-Linkage from a Technical Point of View

    Get PDF
    TRecord linkage is used for preparing sampling frames, deduplication of lists and combining information on the same object from two different databases. If the identifiers of the same objects in two different databases have error free unique common identifiers like personal identification numbers (PID), record linkage is a simple file merge operation. If the identifiers contains errors, record linkage is a challenging task. In many applications, the files have widely different numbers of observations, for example a few thousand records of a sample survey and a few million records of an administrative database of social security numbers. Available software, privacy issues and future research topics are discussed.Record-Linkage, Data-mining, Privacy preserving protocols

    Automated census record linking: a machine learning approach

    Full text link
    Thanks to the availability of new historical census sources and advances in record linking technology, economic historians are becoming big data genealogists. Linking individuals over time and between databases has opened up new avenues for research into intergenerational mobility, assimilation, discrimination, and the returns to education. To take advantage of these new research opportunities, scholars need to be able to accurately and efficiently match historical records and produce an unbiased dataset of links for downstream analysis. I detail a standard and transparent census matching technique for constructing linked samples that can be replicated across a variety of cases. The procedure applies insights from machine learning classification and text comparison to the well known problem of record linkage, but with a focus on the sorts of costs and benefits of working with historical data. I begin by extracting a subset of possible matches for each record, and then use training data to tune a matching algorithm that attempts to minimize both false positives and false negatives, taking into account the inherent noise in historical records. To make the procedure precise, I trace its application to an example from my own work, linking children from the 1915 Iowa State Census to their adult-selves in the 1940 Federal Census. In addition, I provide guidance on a number of practical questions, including how large the training data needs to be relative to the sample.This research has been supported by the NSF-IGERT Multidisciplinary Program in Inequality & Social Policy at Harvard University (Grant No. 0333403)

    Like father like son? Intergenerational immobility in England, 1851-1911

    Get PDF
    This paper uses a linked sample of between 67,000 and 160,000 father-son pairs in 1851-1911 to provide revised estimates of intergenerational occupational mobility in England. After correcting for classical measurement errors using instrumental variables, I find that conventional estimates of intergenerational elasticities could severely underestimate the extent of father-son association in socioeconomic status. Instrumenting one measure of the father’s outcome with a second measure of the father’s outcome raises the intergenerational elasticities (β) of occupational status from 0.4 to 0.6-0.7. Victorian England was therefore a society of limited social mobility. The implications of my results for long-run evolution and international comparisons of social mobility in England are discussed

    Linking historical census data across time

    No full text
    Historical census data provide a snapshot of the era when our ancestors lived. Such data contain valuable information for the reconstruction of households and the tracking of family changes across time, which can be used for a variety of social science research projects. As valuable as they are, these data provide only snapshots of the main characteristics of the stock of a population. To capture household changes requires that we link person by person and household by household from one census to the next over a series of censuses. Once linked together, the census data are greatly enhanced in value. Development of an automatic or semi-automatic linking procedure will significantly relieve social scientists from the tedious task of manually linking individuals, families, and households, and can lead to an improvement of their productivity. In this thesis, a systematic solution is proposed for linking historical census data that integrates data cleaning and standardisation, as well as record and household linkage over consecutive censuses. This solution consists of several data pre-processing, machine learning, and data mining methods that address different aspects of the historical census data linkage problem. A common property of these methods is that they all adopt a strategy to consider a household as an entity, and use the whole of household information to improve the effectiveness of data cleaning and the accuracy of record and household linkage. We first proposal an approach for automatic cleaning and linking using domain knowledge. The core idea is to use household information in both the cleaning and linking steps, so that records that contain errors and variations can be cleaned and standardised and the number of wrongly linked records can be reduced. Second, we introduce a group linking method into household linkage, which enables tracking of the majority of members in a household over a period of time. The proposed method is based on the outcome of the record linkage step using either a similarity based method or a machine learning approach. A group linking method is then applied, aiming to reduce ambiguity of multiple household linkages. Third, we introduce a graph-based method to link households, which takes the structural relationship between household members into consideration. Based on the results of linking individual records, our method builds a graph for each household, so that the matches of household's in different census are determined by both attribute relationship and record similarities. This allows household similarities be more accurately calculated. Finally, we describe an instance classification method based on a multiple instance learning method. This allows an integrated solution to link both households and individual records at the same time. Our method treats group links as bags and individual record links as instances. We extend multiple instance learning from bag to instance classification in order to allow the reconstruction of bags from candidate instances. The classified bag and instance samples lead to a significant reduction in multiple group links, thereby improving the overall quality of linked data

    Automated linking of historical data

    Full text link
    The recent digitization of complete count census data is an extraordinary opportunity for social scientists to create large longitudinal datasets by linking individuals from one census to another or from other sources to the census. We evaluate different automated methods for record linkage, performing a series of comparisons across methods and against hand linking. We have three main findings that lead us to conclude that automated methods perform well. First, a number of automated methods generate very low (less than 5%) false positive rates. The automated methods trace out a frontier illustrating the tradeoff between the false positive rate and the (true) match rate. Relative to more conservative automated algorithms, humans tend to link more observations but at a cost of higher rates of false positives. Second, when human linkers and algorithms use the same linking variables, there is relatively little disagreement between them. Third, across a number of plausible analyses, coefficient estimates and parameters of interest are very similar when using linked samples based on each of the different automated methods. We provide code and Stata commands to implement the various automated methods.Accepted manuscriptFirst author draf
    • …
    corecore