83,932 research outputs found

    Multi-Layer Local Graph Words for Object Recognition

    Full text link
    In this paper, we propose a new multi-layer structural approach for the task of object based image retrieval. In our work we tackle the problem of structural organization of local features. The structural features we propose are nested multi-layered local graphs built upon sets of SURF feature points with Delaunay triangulation. A Bag-of-Visual-Words (BoVW) framework is applied on these graphs, giving birth to a Bag-of-Graph-Words representation. The multi-layer nature of the descriptors consists in scaling from trivial Delaunay graphs - isolated feature points - by increasing the number of nodes layer by layer up to graphs with maximal number of nodes. For each layer of graphs its own visual dictionary is built. The experiments conducted on the SIVAL and Caltech-101 data sets reveal that the graph features at different layers exhibit complementary performances on the same content and perform better than baseline BoVW approach. The combination of all existing layers, yields significant improvement of the object recognition performance compared to single level approaches.Comment: International Conference on MultiMedia Modeling, Klagenfurt : Autriche (2012

    Memory Organization for Invariant Object Recognition and Categorization

    Get PDF
    Using distributed representations of objects enables artificial systems to be more versatile regarding inter- and intra-category variability, improving the appearance-based modeling of visual object understanding. They are built on the hypothesis that object models are structured dynamically using relatively invariant patches of information arranged in visual dictionaries, which can be shared across objects from the same category. However, implementing distributed representations efficiently to support the complexity of invariant object recognition and categorization remains a research problem of outstanding significance for the biological, the psychological, and the computational approach to understanding visual perception. The present work focuses on solutions driven by top-down object knowledge. It is motivated by the idea that, equipped with sensors and processing mechanisms from the neural pathways serving visual perception, biological systems are able to define efficient measures of similarities between properties observed in objects and use these relationships to form natural clusters of object parts that share equivalent ones. Based on the comparison of stimulus-response signatures from these object-to-memory mappings, biological systems are able to identify objects and their kinds. The present work combines biologically inspired mathematical models to develop memory frameworks for artificial systems, where these invariant patches are represented with regular-shaped graphs, whose nodes are labeled with elementary features that capture texture information from object images. It also applies unsupervised clustering techniques to these graph image features to corroborate the existence of natural clusters within their data distribution and determine their composition. The properties of such computational theory include self-organization and intelligent matching of these graph image features based on the similarity and co-occurrence of their captured texture information. The performance to model invariant object recognition and categorization of feature-based artificial systems equipped with each of the developed memory frameworks is validated applying standard methodologies to well-known image libraries found in literature. Additionally, these artificial systems are cross-compared with state-of-the-art alternative solutions. In conclusion, the findings of the present work convey implications for strategies and experimental paradigms to analyze human object memory as well as technical applications for robotics and computer vision

    Feature Selection via Eigenvector Centrality

    Get PDF
    In an era where accumulating data is easy and storing it inexpensive, feature selection plays a central role in helping to reduce the high-dimensionality of huge amounts of otherwise meaningless data. In this paper, we propose a graph-based method for feature selection that ranks features by identifying the most important ones into arbitrary set of cues. Mapping the problem on an affinity graph - where features are the nodes - the solution is given by assessing the importance of nodes through some indicators of centrality, in particular, the Eigenvector Centrality (EC). The gist of EC is to estimate the importance of a feature as a function of the importance of its neighbors. Ranking central nodes individuates candidate features, which turn out to be effective from a classification point of view, as proved by a thoroughly experimental section. Our approach has been tested on 7 diverse datasets from recent literature (e.g., biological data, object recognition, among others), and compared against filter, embedded, and wrappers methods. The results are remarkable in terms of accuracy, stability and low execution time
    • …
    corecore