2,370 research outputs found

    A gradient-based weighted averaging method for estimation of fingerprint orientation fields

    Get PDF
    Estimation of orientation fields is an essential module in a fingerprint recognition system. Conventional gradient based approaches are popular but very sensitive to noise. In this paper, we propose a new implementation that is more resistant to noise. Our basic idea is to conduct redundant estimation over four overlapping neighborhoods for each target block. Following this idea, we devise a weighted averaging scheme operated on the base blocks directly. Thus, each block (including the target one) in the overlapping neighborhoods has different impact on estimation of the dominant orientation fields. Our preliminary experiment results suggest that the proposed weighted averaging algorithm is more robust against noise in comparison with other gradient based methods

    A technique to improve ridge flows of fingerprint orientation fields estimation

    Get PDF
    An accurate estimated fingerprint orientation fields is a significant step for detection of singular points. Gradient-based methods are frequently used for estimating orientation fields but those methods are sensitive to noise. Fingerprints that perfect quality are seldom. They may be corrupted and degraded due to impression conditions or variations on skin. Enhancement of ridge flows improved the structure of orientation fields and hence increased the number of true singular points thereby conducting the overall performance of the classification process. In this paper, we provided discussion on the technique and implementation to improve local ridge flows of fingerprint orientation fields. That main technique have four steps; firstly, fingerprint segmentation; secondly, identification of noise areas and marking; thirdly, estimation of fingerprint orientation fields, and finally, enhancement of ridge flows using minimum variance of the cross centre block direction in squared gradients. A standard fingerprint database is used for testing of proposed technique to verify the tier of effectivity of algorithm. The experimental results suggest that our enhanced algorithm achieves visibly better ridge flows compare to other methods

    A Survey of the methods on fingerprint orientation field estimation

    Get PDF
    Fingerprint orientation field (FOF) estimation plays a key role in enhancing the performance of the automated fingerprint identification system (AFIS): Accurate estimation of FOF can evidently improve the performance of AFIS. However, despite the enormous attention on the FOF estimation research in the past decades, the accurate estimation of FOFs, especially for poor-quality fingerprints, still remains a challenging task. In this paper, we devote to review and categorization of the large number of FOF estimation methods proposed in the specialized literature, with particular attention to the most recent work in this area. Broadly speaking, the existing FOF estimation methods can be grouped into three categories: gradient-based methods, mathematical models-based methods, and learning-based methods. Identifying and explaining the advantages and limitations of these FOF estimation methods is of fundamental importance for fingerprint identification, because only a full understanding of the nature of these methods can shed light on the most essential issues for FOF estimation. In this paper, we make a comprehensive discussion and analysis of these methods concerning their advantages and limitations. We have also conducted experiments using publically available competition dataset to effectively compare the performance of the most relevant algorithms and methods

    Fingerprint Enhancement Algorithm Based-on Gradient Magnitude for the Estimation of Orientation Fields

    Get PDF
    An accurate estimation of fingerprint orientation fields is an important step in the fingerprint classification process. Gradient-based approaches are often used for estimating orientation fields of ridge structures but this method is susceptible to noise. Enhancement of fingerprint images improves the ridge-valley structure and increases the number of correct features thereby conducing the overall performance of the classification process. In this paper, we propose an algorithm to improve ridge orientation textures using gradient magnitude. That algorithm has four steps; firstly, normalization of fingerprint image, secondly, foreground extraction, thirdly, noise areas identification and marking using gradient coherence and finally, enhancement of grey level. We have used standard fingerprint database NIST-DB14 for testing of proposed algorithm to verify the degree of efficiency of algorithm. The experiment results suggest that our enhanced algorithm achieves visibly better noise resistance with other methods

    Fingerabdruckswachstumvorhersage, Bildvorverarbeitung und Multi-level Judgment Aggregation

    Get PDF
    Im ersten Teil dieser Arbeit wird Fingerwachstum untersucht und eine Methode zur Vorhersage von Wachstum wird vorgestellt. Die EffektivitĂ€t dieser Methode wird mittels mehrerer Tests validiert. Vorverarbeitung von Fingerabdrucksbildern wird im zweiten Teil behandelt und neue Methoden zur SchĂ€tzung des Orientierungsfelds und der Ridge-Frequenz sowie zur Bildverbesserung werden vorgestellt: Die Line Sensor Methode zur OrientierungsfeldschĂ€tzung, gebogene Regionen zur Ridge-Frequenz-SchĂ€tzung und gebogene Gabor Filter zur Bildverbesserung. Multi-level Jugdment Aggregation wird eingefĂŒhrt als Design Prinzip zur Kombination mehrerer Methoden auf mehreren Verarbeitungsstufen. Schließlich wird Score Neubewertung vorgestellt, um Informationen aus der Vorverarbeitung mit in die Score Bildung einzubeziehen. Anhand eines Anwendungsbeispiels wird die Wirksamkeit dieses Ansatzes auf den verfĂŒgbaren FVC-Datenbanken gezeigt.Finger growth is studied in the first part of the thesis and a method for growth prediction is presented. The effectiveness of the method is validated in several tests. Fingerprint image preprocessing is discussed in the second part and novel methods for orientation field estimation, ridge frequency estimation and image enhancement are proposed: the line sensor method for orientation estimation provides more robustness to noise than state of the art methods. Curved regions are proposed for improving the ridge frequency estimation and curved Gabor filters for image enhancement. The notion of multi-level judgment aggregation is introduced as a design principle for combining different methods at all levels of fingerprint image processing. Lastly, score revaluation is proposed for incorporating information obtained during preprocessing into the score, and thus amending the quality of the similarity measure at the final stage. A sample application combines all proposed methods of the second part and demonstrates the validity of the approach by achieving massive verification performance improvements in comparison to state of the art software on all available databases of the fingerprint verification competitions (FVC)

    Novel Feature Extraction Methodology with Evaluation in Artificial Neural Networks Based Fingerprint Recognition System

    Get PDF
    Fingerprint recognition is one of the most common biometric recognition systems that includes feature extraction and decision modules. In this work, these modules are achieved via artificial neural networks and image processing operations. The aim of the work is to define a new method that requires less computational load and storage capacity, can be an alternative to existing methods, has high fault tolerance, convenient for fraud measures, and is suitable for development. In order to extract the feature points called minutia points of each fingerprint sample, Multilayer Perceptron algorithm is used. Furthermore, the center of the fingerprint is also determined using an improved orientation map. The proposed method gives approximate position information of minutiae points with respect to the core point using a fairly simple, orientation map-based method that provides ease of operation, but with the use of artificial neurons with high fault tolerance, this method has been turned to an advantage. After feature extraction, General Regression Neural Network is used for identification. The system algorithm is evaluated in UPEK and FVC2000 database. The accuracies without rejection of bad images for the database are 95.57% and 91.38% for UPEK and FVC2000 respectively

    Error propagation in pattern recognition systems: Impact of quality on fingerprint categorization

    Get PDF
    The aspect of quality in pattern classification has recently been explored in the context of biometric identification and authentication systems. The results presented in the literature indicate that incorporating information about quality of the input pattern leads to improved classification performance. The quality itself, however, can be defined in a number of ways, and its role in the various stages of pattern classification is often ambiguous or ad hoc. In this dissertation a more systematic approach to the incorporation of localized quality metrics into the pattern recognition process is developed for the specific task of fingerprint categorization. Quality is defined not as an intrinsic property of the image, but rather in terms of a set of defects introduced to it. A number of fingerprint images have been examined and the important quality defects have been identified and modeled in a mathematically tractable way. The models are flexible and can be used to generate synthetic images that can facilitate algorithm development and large scale, less time consuming performance testing. The effect of quality defects on various stages of the fingerprint recognition process are examined both analytically and empirically. For these defect models, it is shown that the uncertainty of parameter estimates, i.e. extracted fingerprint features, is the key quantity that can be calculated and propagated forward through the stages of the fingerprint classification process. Modified image processing techniques that explicitly utilize local quality metrics in the extraction of features useful in fingerprint classification, such as ridge orientation flow field, are presented and their performance is investigated

    Ridge orientation modeling and feature analysis for fingerprint identification

    Get PDF
    This thesis systematically derives an innovative approach, called FOMFE, for fingerprint ridge orientation modeling based on 2D Fourier expansions, and explores possible applications of FOMFE to various aspects of a fingerprint identification system. Compared with existing proposals, FOMFE does not require prior knowledge of the landmark singular points (SP) at any stage of the modeling process. This salient feature makes it immune from false SP detections and robust in terms of modeling ridge topology patterns from different typological classes. The thesis provides the motivation of this work, thoroughly reviews the relevant literature, and carefully lays out the theoretical basis of the proposed modeling approach. This is followed by a detailed exposition of how FOMFE can benefit fingerprint feature analysis including ridge orientation estimation, singularity analysis, global feature characterization for a wide variety of fingerprint categories, and partial fingerprint identification. The proposed methods are based on the insightful use of theory from areas such as Fourier analysis of nonlinear dynamic systems, analytical operators from differential calculus in vector fields, and fluid dynamics. The thesis has conducted extensive experimental evaluation of the proposed methods on benchmark data sets, and drawn conclusions about strengths and limitations of these new techniques in comparison with state-of-the-art approaches. FOMFE and the resulting model-based methods can significantly improve the computational efficiency and reliability of fingerprint identification systems, which is important for indexing and matching fingerprints at a large scale

    Magnetic Resonance Characterization of Porous Media Using Diffusion through Internal Magnetic Fields

    Get PDF
    When a porous material is inserted into a uniform magnetic field, spatially varying fields typically arise inside the pore space due to susceptibility contrast between the solid matrix and the surrounding fluid. As a result, direct measurement of the field variation may provide a unique opportunity to characterize the pore geometry. The sensitivity of nuclear magnetic resonance (NMR) to inhomogeneous field variations through their dephasing effects on diffusing spins is unique and powerful. Recent theoretical and experimental research sheds new light on how to utilize susceptibility-induced internal field gradients to quantitatively probe the microstructure of porous materials. This article reviews ongoing developments based on the stimulated echo-pulse sequence to extend the characterization of porous media using both spatially resolved and unresolved susceptibility-induced internal gradients that operate on a diffusing-spin ensemble.open
    • 

    corecore