11 research outputs found

    SAT-based preimage attacks on SHA-1

    Get PDF
    Hash functions are important cryptographic primitives which map arbitrarily long messages to fixed-length message digests in such a way that: (1) it is easy to compute the message digest given a message, while (2) inverting the hashing process (e.g. finding a message that maps to a specific message digest) is hard. One attack against a hash function is an algorithm that nevertheless manages to invert the hashing process. Hash functions are used in e.g. authentication, digital signatures, and key exchange. A popular hash function used in many practical application scenarios is the Secure Hash Algorithm (SHA-1). In this thesis we investigate the current state of the art in carrying out preimage attacks against SHA-1 using SAT solvers, and we attempt to find out if there is any room for improvement in either the encoding or the solving processes. We run a series of experiments using SAT solvers on encodings of reduced-difficulty versions of SHA-1. Each experiment tests one aspect of the encoding or solving process, such as e.g. determining whether there exists an optimal restart interval or determining which branching heuristic leads to the best average solving time. An important part of our work is to use statistically sound methods, i.e. hypothesis tests which take sample size and variation into account. Our most important result is a new encoding of 32-bit modular addition which significantly reduces the time it takes the SAT solver to find a solution compared to previously known encodings. Other results include the fact that reducing the absolute size of the search space by fixing bits of the message up to a certain point actually results in an instance that is harder for the SAT solver to solve. We have also identified some slight improvements to the parameters used by the heuristics of the solver MiniSat; for example, contrary to assertions made in the literature, we find that using longer restart intervals improves the running time of the solver

    Certifying Correctness for Combinatorial Algorithms : by Using Pseudo-Boolean Reasoning

    Get PDF
    Over the last decades, dramatic improvements in combinatorialoptimisation algorithms have significantly impacted artificialintelligence, operations research, and other areas. These advances,however, are achieved through highly sophisticated algorithms that aredifficult to verify and prone to implementation errors that can causeincorrect results. A promising approach to detect wrong results is touse certifying algorithms that produce not only the desired output butalso a certificate or proof of correctness of the output. An externaltool can then verify the proof to determine that the given answer isvalid. In the Boolean satisfiability (SAT) community, this concept iswell established in the form of proof logging, which has become thestandard solution for generating trustworthy outputs. The problem isthat there are still some SAT solving techniques for which prooflogging is challenging and not yet used in practice. Additionally,there are many formalisms more expressive than SAT, such as constraintprogramming, various graph problems and maximum satisfiability(MaxSAT), for which efficient proof logging is out of reach forstate-of-the-art techniques.This work develops a new proof system building on the cutting planesproof system and operating on pseudo-Boolean constraints (0-1 linearinequalities). We explain how such machine-verifiable proofs can becreated for various problems, including parity reasoning, symmetry anddominance breaking, constraint programming, subgraph isomorphism andmaximum common subgraph problems, and pseudo-Boolean problems. Weimplement and evaluate the resulting algorithms and a verifier for theproof format, demonstrating that the approach is practical for a widerange of problems. We are optimistic that the proposed proof system issuitable for designing certifying variants of algorithms inpseudo-Boolean optimisation, MaxSAT and beyond

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore