52,051 research outputs found

    Curious Negotiator

    Full text link
    n negotiation the exchange of information is as important as the exchange of offers. The curious negotiator is a multiagent system with three types of agents. Two negotiation agents, each representing an individual, develop consecutive offers, supported by information, whilst requesting information from its opponent. A mediator agent, with experience of prior negotiations, suggests how the negotiation may develop. A failed negotiation is a missed opportunity. An observer agent analyses failures looking for new opportunities. The integration of negotiation theory and data mining enables the curious negotiator to discover and exploit negotiation opportunities. Trials will be conducted in electronic business

    An Evolutionary Learning Approach for Adaptive Negotiation Agents

    Get PDF
    Developing effective and efficient negotiation mechanisms for real-world applications such as e-Business is challenging since negotiations in such a context are characterised by combinatorially complex negotiation spaces, tough deadlines, very limited information about the opponents, and volatile negotiator preferences. Accordingly, practical negotiation systems should be empowered by effective learning mechanisms to acquire dynamic domain knowledge from the possibly changing negotiation contexts. This paper illustrates our adaptive negotiation agents which are underpinned by robust evolutionary learning mechanisms to deal with complex and dynamic negotiation contexts. Our experimental results show that GA-based adaptive negotiation agents outperform a theoretically optimal negotiation mechanism which guarantees Pareto optimal. Our research work opens the door to the development of practical negotiation systems for real-world applications

    Competing Claims on Natural Resources: What Role for Science?

    Get PDF
    Competing claims on natural resources become increasingly acute, with the poor being most vulnerable to adverse outcomes of such competition. A major challenge for science and policy is to progress from facilitating univocal use to guiding stakeholders in dealing with potentially conflicting uses of natural resources. The development of novel, more equitable, management options that reduce rural poverty is key to achieving sustainable use of natural resources and the resolution of conflicts over them. Here, we describe an interdisciplinary and interactive approach for: (i) the understanding of competing claims and stakeholder objectives; (ii) the identification of alternative resource use options, and (iii) the scientific support to negotiation processes between stakeholders. Central to the outlined approach is a shifted perspective on the role of scientific knowledge in society. Understanding scientific knowledge as entering societal arenas and as fundamentally negotiated, the role of the scientist becomes a more modest one, a contributor to ongoing negotiation processes among stakeholders. Scientists can, therefore, not merely describe and explain resource-use dynamics and competing claims, but in doing so, they should actively contribute to negotiation processes between stakeholders operating at different scales (local, national, regional, and global). Together with stakeholders, they explore alternatives that can contribute to more sustainable and equitable use of natural resources and, where possible, design new technical options and institutional arrangements

    Forum Session at the First International Conference on Service Oriented Computing (ICSOC03)

    Get PDF
    The First International Conference on Service Oriented Computing (ICSOC) was held in Trento, December 15-18, 2003. The focus of the conference ---Service Oriented Computing (SOC)--- is the new emerging paradigm for distributed computing and e-business processing that has evolved from object-oriented and component computing to enable building agile networks of collaborating business applications distributed within and across organizational boundaries. Of the 181 papers submitted to the ICSOC conference, 10 were selected for the forum session which took place on December the 16th, 2003. The papers were chosen based on their technical quality, originality, relevance to SOC and for their nature of being best suited for a poster presentation or a demonstration. This technical report contains the 10 papers presented during the forum session at the ICSOC conference. In particular, the last two papers in the report ere submitted as industrial papers

    Application of Reinforcement Learning to Multi-Agent Production Scheduling

    Get PDF
    Reinforcement learning (RL) has received attention in recent years from agent-based researchers because it can be applied to problems where autonomous agents learn to select proper actions for achieving their goals based on interactions with their environment. Each time an agent performs an action, the environment¡Šs response, as indicated by its new state, is used by the agent to reward or penalize its action. The agent¡Šs goal is to maximize the total amount of reward it receives over the long run. Although there have been several successful examples demonstrating the usefulness of RL, its application to manufacturing systems has not been fully explored. The objective of this research is to develop a set of guidelines for applying the Q-learning algorithm to enable an individual agent to develop a decision making policy for use in agent-based production scheduling applications such as dispatching rule selection and job routing. For the dispatching rule selection problem, a single machine agent employs the Q-learning algorithm to develop a decision-making policy on selecting the appropriate dispatching rule from among three given dispatching rules. In the job routing problem, a simulated job shop system is used for examining the implementation of the Q-learning algorithm for use by job agents when making routing decisions in such an environment. Two factorial experiment designs for studying the settings used to apply Q-learning to the single machine dispatching rule selection problem and the job routing problem are carried out. This study not only investigates the main effects of this Q-learning application but also provides recommendations for factor settings and useful guidelines for future applications of Q-learning to agent-based production scheduling
    • …
    corecore