8,911 research outputs found

    Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks

    Full text link
    Autonomous robots need to interact with unknown, unstructured and changing environments, constantly facing novel challenges. Therefore, continuous online adaptation for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes in the environment, the constraints, the tasks, or the robot itself are crucial. In this work, we propose a novel framework for probabilistic online motion planning with online adaptation based on a bio-inspired stochastic recurrent neural network. By using learning signals which mimic the intrinsic motivation signalcognitive dissonance in addition with a mental replay strategy to intensify experiences, the stochastic recurrent network can learn from few physical interactions and adapts to novel environments in seconds. We evaluate our online planning and adaptation framework on an anthropomorphic KUKA LWR arm. The rapid online adaptation is shown by learning unknown workspace constraints sample-efficiently from few physical interactions while following given way points.Comment: accepted in Neural Network

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Introduction: The Fourth International Workshop on Epigenetic Robotics

    Get PDF
    As in the previous editions, this workshop is trying to be a forum for multi-disciplinary research ranging from developmental psychology to neural sciences (in its widest sense) and robotics including computational studies. This is a two-fold aim of, on the one hand, understanding the brain through engineering embodied systems and, on the other hand, building artificial epigenetic systems. Epigenetic contains in its meaning the idea that we are interested in studying development through interaction with the environment. This idea entails the embodiment of the system, the situatedness in the environment, and of course a prolonged period of postnatal development when this interaction can actually take place. This is still a relatively new endeavor although the seeds of the developmental robotics community were already in the air since the nineties (Berthouze and Kuniyoshi, 1998; Metta et al., 1999; Brooks et al., 1999; Breazeal, 2000; Kozima and Zlatev, 2000). A few had the intuition – see Lungarella et al. (2003) for a comprehensive review – that, intelligence could not be possibly engineered simply by copying systems that are “ready made” but rather that the development of the system fills a major role. This integration of disciplines raises the important issue of learning on the multiple scales of developmental time, that is, how to build systems that eventually can learn in any environment rather than program them for a specific environment. On the other hand, the hope is that robotics might become a new tool for brain science similarly to what simulation and modeling have become for the study of the motor system. Our community is still pretty much evolving and “under construction” and for this reason, we tried to encourage submissions from the psychology community. Additionally, we invited four neuroscientists and no roboticists for the keynote lectures. We received a record number of submissions (more than 50), and given the overall size and duration of the workshop together with our desire to maintain a single-track format, we had to be more selective than ever in the review process (a 20% acceptance rate on full papers). This is, if not an index of quality, at least an index of the interest that gravitates around this still new discipline

    Home alone: autonomous extension and correction of spatial representations

    Get PDF
    In this paper we present an account of the problems faced by a mobile robot given an incomplete tour of an unknown environment, and introduce a collection of techniques which can generate successful behaviour even in the presence of such problems. Underlying our approach is the principle that an autonomous system must be motivated to act to gather new knowledge, and to validate and correct existing knowledge. This principle is embodied in Dora, a mobile robot which features the aforementioned techniques: shared representations, non-monotonic reasoning, and goal generation and management. To demonstrate how well this collection of techniques work in real-world situations we present a comprehensive analysis of the Dora system’s performance over multiple tours in an indoor environment. In this analysis Dora successfully completed 18 of 21 attempted runs, with all but 3 of these successes requiring one or more of the integrated techniques to recover from problems

    Crossmodal content binding in information-processing architectures

    Get PDF
    Operating in a physical context, an intelligent robot faces two fundamental problems. First, it needs to combine information from its different sensors to form a representation of the environment that is more complete than any of its sensors on its own could provide. Second, it needs to combine high-level representations (such as those for planning and dialogue) with its sensory information, to ensure that the interpretations of these symbolic representations are grounded in the situated context. Previous approaches to this problem have used techniques such as (low-level) information fusion, ontological reasoning, and (high-level) concept learning. This paper presents a framework in which these, and other approaches, can be combined to form a shared representation of the current state of the robot in relation to its environment and other agents. Preliminary results from an implemented system are presented to illustrate how the framework supports behaviours commonly required of an intelligent robot

    Probabilistic Hybrid Action Models for Predicting Concurrent Percept-driven Robot Behavior

    Full text link
    This article develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, several modes of their interferences, and the achievement of triggering conditions in closed-loop robot plans. The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We show how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results

    Encoderless position control of a two-link robot manipulator

    Get PDF

    Consciousness, Meaning and the Future Phenomenology

    Get PDF
    Phenomenological states are generally considered sources of intrinsic motivation for autonomous biological agents. In this paper we will address the issue of exploiting these states for robust goal-directed systems. We will provide an analysis of consciousness in terms of a precise definition of how an agent “understands” the informational flows entering the agent. This model of consciousness and understanding is based in the analysis and evaluation of phenomenological states along potential trajectories in the phase space of the agents. This implies that a possible strategy to follow in order to build autonomous but useful systems is to embed them with the particular, ad-hoc phenomenology that captures the requirements that define the system usefulness from a requirements-strict engineering viewpoint
    • 

    corecore