9 research outputs found

    Parallel Support Vector Machines

    Get PDF
    The Support Vector Machine (SVM) is a supervised algorithm for the solution of classification and regression problems. SVMs have gained widespread use in recent years because of successful applications like character recognition and the profound theoretical underpinnings concerning generalization performance. Yet, one of the remaining drawbacks of the SVM algorithm is its high computational demands during the training and testing phase. This article describes how to efficiently parallelize SVM training in order to cut down execution times. The parallelization technique employed is based on a decomposition approach, where the inner quadratic program (QP) is solved using Sequential Minimal Optimization (SMO). Thus all types of SVM formulations can be solved in parallel, including C-SVC and nu-SVC for classification as well as epsilon-SVR and nu-SVR for regression. Practical results show, that on most problems linear or even superlinear speedups can be attained

    Rigorous numerical approaches in electronic structure theory

    Get PDF
    Electronic structure theory concerns the description of molecular properties according to the postulates of quantum mechanics. For practical purposes, this is realized entirely through numerical computation, the scope of which is constrained by computational costs that increases rapidly with the size of the system. The significant progress made in this field over the past decades have been facilitated in part by the willingness of chemists to forego some mathematical rigour in exchange for greater efficiency. While such compromises allow large systems to be computed feasibly, there are lingering concerns over the impact that these compromises have on the quality of the results that are produced. This research is motivated by two key issues that contribute to this loss of quality, namely i) the numerical errors accumulated due to the use of finite precision arithmetic and the application of numerical approximations, and ii) the reliance on iterative methods that are not guaranteed to converge to the correct solution. Taking the above issues in consideration, the aim of this thesis is to explore ways to perform electronic structure calculations with greater mathematical rigour, through the application of rigorous numerical methods. Of which, we focus in particular on methods based on interval analysis and deterministic global optimization. The Hartree-Fock electronic structure method will be used as the subject of this study due to its ubiquity within this domain. We outline an approach for placing rigorous bounds on numerical error in Hartree-Fock computations. This is achieved through the application of interval analysis techniques, which are able to rigorously bound and propagate quantities affected by numerical errors. Using this approach, we implement a program called Interval Hartree-Fock. Given a closed-shell system and the current electronic state, this program is able to compute rigorous error bounds on quantities including i) the total energy, ii) molecular orbital energies, iii) molecular orbital coefficients, and iv) derived electronic properties. Interval Hartree-Fock is adapted as an error analysis tool for studying the impact of numerical error in Hartree-Fock computations. It is used to investigate the effect of input related factors such as system size and basis set types on the numerical accuracy of the Hartree-Fock total energy. Consideration is also given to the impact of various algorithm design decisions. Examples include the application of different integral screening thresholds, the variation between single and double precision arithmetic in two-electron integral evaluation, and the adjustment of interpolation table granularity. These factors are relevant to both the usage of conventional Hartree-Fock code, and the development of Hartree-Fock code optimized for novel computing devices such as graphics processing units. We then present an approach for solving the Hartree-Fock equations to within a guaranteed margin of error. This is achieved by treating the Hartree-Fock equations as a non-convex global optimization problem, which is then solved using deterministic global optimization. The main contribution of this work is the development of algorithms for handling quantum chemistry specific expressions such as the one and two-electron integrals within the deterministic global optimization framework. This approach was implemented as an extension to an existing open source solver. Proof of concept calculations are performed for a variety of problems within Hartree-Fock theory, including those in i) point energy calculation, ii) geometry optimization, iii) basis set optimization, and iv) excited state calculation. Performance analyses of these calculations are also presented and discussed

    Modelling and Inverse Problems of Control for Distributed Parameter Systems; Proceedings of IFIP(W.G. 7.2)-IIASA Conference, July 24-28, 1989

    Get PDF
    The techniques of solving inverse problems that arise in the estimation and control of distributed parameter systems in the face of uncertainty as well as the applications of these to mathematical modelling for problems of applied system analysis (environmental issues, technological processes, biomathematical models, mathematical economy and other fields) are among the major topics of research at the Dynamic Systems Project of the Systems and Decision Sciences (SDS) Program at IIASA. In July 1989 the SDS Program was a coorganizer of a regular IFIP (WG 7.2) conference on Modelling and Inverse Problems of Control for Distributed Parameter Systems that was held at IIASA, and was attended by a number of prominent theorists and practitioners. One of the main purpose of this meeting was to review recent developments and perspectives in this field. The proceedings are presented in this volume

    Moving Horizon Estimation and Control

    Get PDF
    corecore