236 research outputs found

    Rigid Body Attitude Estimation: An Overview and Comparative Study

    Get PDF
    The attitude estimation of rigid body systems has attracted the attention of many researchers over the years. The development of efficient estimation algorithms that can accurately estimate the orientation of a rigid body is a crucial step towards a reliable implementation of control schemes for underwater and flying vehicles. The primary focus of this thesis consists in investigating various attitude estimation techniques and their applications. Two major classes are discussed. The first class consists of the earliest static attitude determination techniques relying solely on a set of body vector measurements of known vectors in the inertial frame. The second class consists of dynamic attitude estimation and filtering techniques, relying on body vector measurements as well other measurements, and using the dynamical equations of the system under consideration. Various attitude estimation algorithms, including the latest nonlinear attitude observers, are presented and discussed, providing a survey that covers the evolution and structural differences of these estimation methods. Simulation results have been carried out for a selected number of such attitude estimators. Their performance in the presence of noisy measurements, as well as their advantages and disadvantages are discussed

    Local observers on linear Lie groups with linear estimation error dynamics

    Get PDF
    This paper proposes local exponential observers for systems on linear Lie groups. We study two different classes of systems. In the first class, the full state of the system evolves on a linear Lie group and is available for measurement. In the second class, only part of the system's state evolves on a linear Lie group and this portion of the state is available for measurement. In each case, we propose two different observer designs. We show that, depending on the observer chosen, local exponential stability of one of the two observation error dynamics, left- or right-invariant error dynamics, is obtained. For the first class of systems these results are developed by showing that the estimation error dynamics are differentially equivalent to a stable linear differential equation on a vector space. For the second class of system, the estimation error dynamics are almost linear. We illustrate these observer designs on an attitude estimation problem

    Velocity-aided Attitude Estimation for Accelerated Rigid Bodies

    Full text link
    Two nonlinear observers for velocity-aided attitude estimation, relying on gyrometers, accelerometers, magnetometers, and velocity measured in the body-fixed frame, are proposed. As opposed to state-of-the-art body-fixed velocity-aided attitude observers endowed with local properties, both observers are (almost) globally asymptotically stable, with very simple and flexible tuning. Moreover, the roll and pitch estimates are globally decoupled from magnetometer measurements

    Angular velocity nonlinear observer from single vector measurements

    Full text link
    The paper proposes a technique to estimate the angular velocity of a rigid body from single vector measurements. Compared to the approaches presented in the literature, it does not use attitude information nor rate gyros as inputs. Instead, vector measurements are directly filtered through a nonlinear observer estimating the angular velocity. Convergence is established using a detailed analysis of a linear-time varying dynamics appearing in the estimation error equation. This equation stems from the classic Euler equations and measurement equations. As is proven, the case of free-rotation allows one to relax the persistence of excitation assumption. Simulation results are provided to illustrate the method.Comment: 10 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:1503.0287
    corecore