2,931 research outputs found

    Gesture Based Control of Semi-Autonomous Vehicles

    Get PDF
    The objective of this investigation is to explore the use of hand gestures to control semi-autonomous vehicles, such as quadcopters, using realistic, physics based simulations. This involves identifying natural gestures to control basic functions of a vehicle, such as maneuvering and onboard equipment operation, and building simulations using the Unity game engine to investigate preferred use of those gestures. In addition to creating a realistic operating experience, human factors associated with limitations on physical hand motion and information management are also considered in the simulation development process. Testing with external participants using a recreational quadcopter simulation built in Unity was conducted to assess the suitability of the simulation and preferences between a joystick approach and the gesture-based approach. Initial feedback indicated that the simulation represented the actual vehicle performance well and that the joystick is preferred over the gesture-based approach. Improvements in the gesture-based control are documented as additional features in the simulation, such as basic maneuver training and additional vehicle positioning information, are added to assist the user to better learn the gesture-based interface and implementation of active control concepts to interpret and apply vehicle forces and torques. Tests were also conducted with an actual ground vehicle to investigate if knowledge and skill from the simulated environment transfers to a real-life scenario. To assess this, an immersive virtual reality (VR) simulation was built in Unity as a training environment to learn how to control a remote control car using gestures. This was then followed by a control of the actual ground vehicle. Observations and participant feedback indicated that range of hand movement and hand positions transferred well to the actual demonstration. This illustrated that the VR simulation environment provides a suitable learning experience, and an environment from which to assess human performance; thus, also validating the observations from earlier tests. Overall results indicate that the gesture-based approach holds promise given the emergence of new technology, but additional work needs to be pursued. This includes algorithms to process gesture data to provide more stable and precise vehicle commands and training environments to familiarize users with this new interface concept

    "Out of the loop": autonomous weapon systems and the law of armed conflict

    Get PDF
    The introduction of autonomous weapon systems into the “battlespace” will profoundly influence the nature of future warfare. This reality has begun to draw the attention of the international legal community, with increasing calls for an outright ban on the use of autonomous weapons systems in armed conflict. This Article is intended to help infuse granularity and precision into the legal debates surrounding such weapon systems and their future uses. It suggests that whereas some conceivable autonomous weapon systems might be prohibited as a matter of law, the use of others will be unlawful only when employed in a manner that runs contrary to the law of armed conflict’s prescriptive norms governing the “conduct of hostilities.” This Article concludes that an outright ban of autonomous weapon systems is insupportable as a matter of law, policy, and operational good sense. Indeed, proponents of a ban underestimate the extent to which the law of armed conflict, including its customary law aspect, will control autonomous weapon system operations. Some autonomous weapon systems that might be developed would already be unlawful per se under existing customary law, irrespective of any treaty ban. The use of certain others would be severely limited by that law. Furthermore, an outright ban is premature since no such weapons have even left the drawing board. Critics typically either fail to take account of likely developments in autonomous weapon systems technology or base their analysis on unfounded assumptions about the nature of the systems. From a national security perspective, passing on the opportunity to develop these systems before they are fully understood would be irresponsible. Perhaps even more troubling is the prospect that banning autonomous weapon systems altogether based on speculation as to their future form could forfeit their potential use in a manner that would minimize harm to civilians and civilian objects when compared to non-autonomous weapon systems

    Body swarm interface (BOSI) : controlling robotic swarms using human bio-signals

    Get PDF
    Traditionally robots are controlled using devices like joysticks, keyboards, mice and other similar human computer interface (HCI) devices. Although this approach is effective and practical for some cases, it is restrictive only to healthy individuals without disabilities, and it also requires the user to master the device before its usage. It becomes complicated and non-intuitive when multiple robots need to be controlled simultaneously with these traditional devices, as in the case of Human Swarm Interfaces (HSI). This work presents a novel concept of using human bio-signals to control swarms of robots. With this concept there are two major advantages: Firstly, it gives amputees and people with certain disabilities the ability to control robotic swarms, which has previously not been possible. Secondly, it also gives the user a more intuitive interface to control swarms of robots by using gestures, thoughts, and eye movement. We measure different bio-signals from the human body including Electroencephalography (EEG), Electromyography (EMG), Electrooculography (EOG), using off the shelf products. After minimal signal processing, we then decode the intended control action using machine learning techniques like Hidden Markov Models (HMM) and K-Nearest Neighbors (K-NN). We employ formation controllers based on distance and displacement to control the shape and motion of the robotic swarm. Comparison for ground truth for thoughts and gesture classifications are done, and the resulting pipelines are evaluated with both simulations and hardware experiments with swarms of ground robots and aerial vehicles

    Unmanned Vehicle Systems & Operations on Air, Sea, Land

    Get PDF
    Unmanned Vehicle Systems & Operations On Air, Sea, Land is our fourth textbook in a series covering the world of Unmanned Aircraft Systems (UAS) and Counter Unmanned Aircraft Systems (CUAS). (Nichols R. K., 2018) (Nichols R. K., et al., 2019) (Nichols R. , et al., 2020)The authors have expanded their purview beyond UAS / CUAS systems. Our title shows our concern for growth and unique cyber security unmanned vehicle technology and operations for unmanned vehicles in all theaters: Air, Sea and Land – especially maritime cybersecurity and China proliferation issues. Topics include: Information Advances, Remote ID, and Extreme Persistence ISR; Unmanned Aerial Vehicles & How They Can Augment Mesonet Weather Tower Data Collection; Tour de Drones for the Discerning Palate; Underwater Autonomous Navigation & other UUV Advances; Autonomous Maritime Asymmetric Systems; UUV Integrated Autonomous Missions & Drone Management; Principles of Naval Architecture Applied to UUV’s; Unmanned Logistics Operating Safely and Efficiently Across Multiple Domains; Chinese Advances in Stealth UAV Penetration Path Planning in Combat Environment; UAS, the Fourth Amendment and Privacy; UV & Disinformation / Misinformation Channels; Chinese UAS Proliferation along New Silk Road Sea / Land Routes; Automaton, AI, Law, Ethics, Crossing the Machine – Human Barrier and Maritime Cybersecurity.Unmanned Vehicle Systems are an integral part of the US national critical infrastructure The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. Unmanned Vehicle (UV) Systems & Operations On Air, Sea, Land discusses state-of-the-art technology / issues facing U.S. UV system researchers / designers / manufacturers / testers. We trust our newest look at Unmanned Vehicles in Air, Sea, and Land will enrich our students and readers understanding of the purview of this wonderful technology we call UV.https://newprairiepress.org/ebooks/1035/thumbnail.jp

    Autonomous Quadrotor Control Using Convolutional Neural Networks

    Get PDF
    Quadrotors are considered nowadays one of the fastest growing technologies. It is entering all fields of life making them a powerful tool to serve humanity and help in developing a better life style. It is crucial to experiment all possible ways of controlling quadrotors, starting from classical methodologies to cutting edge modern technologies to serve their purpose. In most of the times quadrotors would have combination of several technologies on board. The attitude angles and altitude control used in this thesis are based mainly on PID control which is modeled and simulated on MATLAB and Simulink. To control the quadrotor behavior for two different tasks, Obstacle Avoidance and Command by Hand Gesture, the use of Convolutional Neural Networks (CNN) was proposed, since this new technology had shown very impressive results in image recognition in recent years. A considerable amount of training images (datasets) were created for the two tasks. Training and testing of the CNN were performed for these datasets, and real time flight experiments were performed, using a ground station, a Arduino microcontroller and interface circuit connected to the quadrotor. Results of the experiments show an excellent error rates for both tasks. The system performance reflects a major advantage of scalability for classification for new classes and other complex tasks, towards an autonomous flying and more intelligent behavior of quadrotors

    A Control Architecture for Unmanned Aerial Vehicles Operating in Human-Robot Team for Service Robotic Tasks

    Get PDF
    In this thesis a Control architecture for an Unmanned Aerial Vehicle (UAV) is presented. The aim of the thesis is to address the problem of control a flying robot operating in human robot team at different level of abstraction. For this purpose, three different layers in the design of the architecture were considered, namely, the high level, the middle level and the low level layers. The special case of an UAV operating in service robotics tasks and in particular in Search&Rescue mission in alpine scenario is considered. Different methodologies for each layer are presented with simulated or real-world experimental validation

    The Design Challenges of Drone Swarm Control

    Get PDF

    Robotics and Military Operations

    Get PDF
    In the wake of two extended wars, Western militaries find themselves looking to the future while confronting amorphous nonstate threats and shrinking defense budgets. The 2015 Kingston Conference on International Security (KCIS) examined how robotics and autonomous systems that enhance soldier effectiveness may offer attractive investment opportunities for developing a more efficient force capable of operating effectively in the future environment. This monograph offers 3 chapters derived from the KCIS and explores the drivers influencing strategic choices associated with these technologies and offers preliminary policy recommendations geared to advance a comprehensive technology investment strategy. In addition, the publication offers insight into the ethical challenges and potential positive moral implications of using robots on the modern battlefield.https://press.armywarcollege.edu/monographs/1398/thumbnail.jp
    • …
    corecore