3,266 research outputs found

    Throughput Scaling of Wireless Networks With Random Connections

    Full text link
    This work studies the throughput scaling laws of ad hoc wireless networks in the limit of a large number of nodes. A random connections model is assumed in which the channel connections between the nodes are drawn independently from a common distribution. Transmitting nodes are subject to an on-off strategy, and receiving nodes employ conventional single-user decoding. The following results are proven: 1) For a class of connection models with finite mean and variance, the throughput scaling is upper-bounded by O(n1/3)O(n^{1/3}) for single-hop schemes, and O(n1/2)O(n^{1/2}) for two-hop (and multihop) schemes. 2) The Θ(n1/2)\Theta (n^{1/2}) throughput scaling is achievable for a specific connection model by a two-hop opportunistic relaying scheme, which employs full, but only local channel state information (CSI) at the receivers, and partial CSI at the transmitters. 3) By relaxing the constraints of finite mean and variance of the connection model, linear throughput scaling Θ(n)\Theta (n) is achievable with Pareto-type fading models.Comment: 13 pages, 4 figures, To appear in IEEE Transactions on Information Theor

    Achievable Throughput in Two-Scale Wireless Networks

    Get PDF
    We propose a new model of wireless networks which we refer to as "two-scale networks." At a local scale, characterised by nodes being within a distance r, channel strengths are drawn independently and identically from a distance-independent distribution. At a global scale, characterised by nodes being further apart from each other than a distance r, channel connections are governed by a Rayleigh distribution, with the power satisfying a distance-based decay law. Thus, at a local scale, channel strengths are determined primarily by random effects such as obstacles and scatterers whereas at the global scale channel strengths depend on distance. For such networks, we propose a hybrid communications scheme, combining elements of distance-dependent networks and random networks. For particular classes of two-scale networks with N nodes, we show that an aggregate throughput that is slightly sublinear in N, for instance, of the form N/ log^4 N is achievable. This offers a significant improvement over a throughput scaling behaviour of O(√N) that is obtained in other work

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well

    Cooperative Cognitive Relaying Under Primary and Secondary Quality of Service Satisfaction

    Full text link
    This paper proposes a new cooperative protocol which involves cooperation between primary and secondary users. We consider a cognitive setting with one primary user and multiple secondary users. The time resource is partitioned into discrete time slots. Each time slot, a secondary user is scheduled for transmission according to time division multiple access, and the remainder of the secondary users, which we refer to as secondary relays, attempt to decode the primary packet. Afterwards, the secondary relays employ cooperative beamforming to forward the primary packet and to provide protection to the secondary destination of the secondary source scheduled for transmission from interference. We characterize the diversity-multiplexing tradeoff of the primary source under the proposed protocol. We consider certain quality of service for each user specified by its required throughput. The optimization problem is stated under such condition. It is shown that the optimization problem is linear and can be readily solved. We show that the sum of the secondary required throughputs must be less than or equal to the probability of correct packets reception.Comment: This paper was accepted in PIMRC 201

    Performance Analysis of LEO Satellite-Based IoT Networks in the Presence of Interference

    Full text link
    This paper explores a star-of-star topology for an internet-of-things (IoT) network using mega low Earth orbit constellations where the IoT users broadcast their sensed information to multiple satellites simultaneously over a shared channel. The satellites use amplify-and-forward relaying to forward the received signal to the ground station (GS), which then combines them coherently using maximal ratio combining. A comprehensive outage probability (OP) analysis is performed for the presented topology. Stochastic geometry is used to model the random locations of satellites, thus making the analysis general and independent of any constellation. The satellites are assumed to be visible if their elevation angle is greater than a threshold, called a mask angle. Statistical characteristics of the range and the number of visible satellites are derived for a given mask angle. Successive interference cancellation (SIC) and capture model (CM)-based decoding schemes are analyzed at the GS to mitigate interference effects. The average OP for the CM-based scheme, and the OP of the best user for the SIC scheme are derived analytically. Simulation results are presented that corroborate the derived analytical expressions. Moreover, insights on the effect of various system parameters like mask angle, altitude, number of satellites and decoding order are also presented. The results demonstrate that the explored topology can achieve the desired OP by leveraging the benefits of multiple satellites. Thus, this topology is an attractive choice for satellite-based IoT networks as it can facilitate burst transmissions without coordination among the IoT users.Comment: Submitted to IEEE IoT Journa
    corecore