2,321 research outputs found

    Corporate competition: A self-organized network

    Get PDF
    A substantial number of studies have extended the work on universal properties in physical systems to complex networks in social, biological, and technological systems. In this paper, we present a complex networks perspective on interfirm organizational networks by mapping, analyzing and modeling the spatial structure of a large interfirm competition network across a variety of sectors and industries within the United States. We propose two micro-dynamic models that are able to reproduce empirically observed characteristics of competition networks as a natural outcome of a minimal set of general mechanisms governing the formation of competition networks. Both models, which utilize different approaches yet apply common principles to network formation give comparable results. There is an asymmetry between companies that are considered competitors, and companies that consider others as their competitors. All companies only consider a small number of other companies as competitors; however, there are a few companies that are considered as competitors by many others. Geographically, the density of corporate headquarters strongly correlates with local population density, and the probability two firms are competitors declines with geographic distance. We construct these properties by growing a corporate network with competitive links using random incorporations modulated by population density and geographic distance. Our new analysis, methodology and empirical results are relevant to various phenomena of social and market behavior, and have implications to research fields such as economic geography, economic sociology, and regional economic development.Organizational networks; Interfirm competition; Economic geography; Social networks; Spatial networks; Network dynamics; Firm size dynamics

    Modeling the IPv6 Internet AS-level Topology

    Full text link
    To measure the IPv6 internet AS-level topology, a network topology discovery system, called Dolphin, was developed. By comparing the measurement result of Dolphin with that of CAIDA's Scamper, it was found that the IPv6 Internet at AS level, similar to other complex networks, is also scale-free but the exponent of its degree distribution is 1.2, which is much smaller than that of the IPv4 Internet and most other scale-free networks. In order to explain this feature of IPv6 Internet we argue that the degree exponent is a measure of uniformity of the degree distribution. Then, for the purpose on modeling the networks, we propose a new model based on the two major factors affecting the exponent of the EBA model. It breaks the lower bound of degree exponent which is 2 for most models. To verify the validity of this model, both theoretical and experimental analyses have been carried out. Finally, we demonstrate how this model can be successfully used to reproduce the topology of the IPv6 Internet.Comment: 15 pages, 5 figure

    Link creation and profile alignment in the aNobii social network

    Full text link
    The present work investigates the structural and dynamical properties of aNobii\footnote{http://www.anobii.com/}, a social bookmarking system designed for readers and book lovers. Users of aNobii provide information about their library, reading interests and geographical location, and they can establish typed social links to other users. Here, we perform an in-depth analysis of the system's social network and its interplay with users' profiles. We describe the relation of geographic and interest-based factors to social linking. Furthermore, we perform a longitudinal analysis to investigate the interplay of profile similarity and link creation in the social network, with a focus on triangle closure. We report a reciprocal causal connection: profile similarity of users drives the subsequent closure in the social network and, reciprocally, closure in the social network induces subsequent profile alignment. Access to the dynamics of the social network also allows us to measure quantitative indicators of preferential linking.Comment: http://www.iisocialcom.org/conference/socialcom2010

    Evolution of networks

    Full text link
    We review the recent fast progress in statistical physics of evolving networks. Interest has focused mainly on the structural properties of random complex networks in communications, biology, social sciences and economics. A number of giant artificial networks of such a kind came into existence recently. This opens a wide field for the study of their topology, evolution, and complex processes occurring in them. Such networks possess a rich set of scaling properties. A number of them are scale-free and show striking resilience against random breakdowns. In spite of large sizes of these networks, the distances between most their vertices are short -- a feature known as the ``small-world'' effect. We discuss how growing networks self-organize into scale-free structures and the role of the mechanism of preferential linking. We consider the topological and structural properties of evolving networks, and percolation in these networks. We present a number of models demonstrating the main features of evolving networks and discuss current approaches for their simulation and analytical study. Applications of the general results to particular networks in Nature are discussed. We demonstrate the generic connections of the network growth processes with the general problems of non-equilibrium physics, econophysics, evolutionary biology, etc.Comment: 67 pages, updated, revised, and extended version of review, submitted to Adv. Phy

    Properties of Healthcare Teaming Networks as a Function of Network Construction Algorithms

    Full text link
    Network models of healthcare systems can be used to examine how providers collaborate, communicate, refer patients to each other. Most healthcare service network models have been constructed from patient claims data, using billing claims to link patients with providers. The data sets can be quite large, making standard methods for network construction computationally challenging and thus requiring the use of alternate construction algorithms. While these alternate methods have seen increasing use in generating healthcare networks, there is little to no literature comparing the differences in the structural properties of the generated networks. To address this issue, we compared the properties of healthcare networks constructed using different algorithms and the 2013 Medicare Part B outpatient claims data. Three different algorithms were compared: binning, sliding frame, and trace-route. Unipartite networks linking either providers or healthcare organizations by shared patients were built using each method. We found that each algorithm produced networks with substantially different topological properties. Provider networks adhered to a power law, and organization networks to a power law with exponential cutoff. Censoring networks to exclude edges with less than 11 shared patients, a common de-identification practice for healthcare network data, markedly reduced edge numbers and greatly altered measures of vertex prominence such as the betweenness centrality. We identified patterns in the distance patients travel between network providers, and most strikingly between providers in the Northeast United States and Florida. We conclude that the choice of network construction algorithm is critical for healthcare network analysis, and discuss the implications for selecting the algorithm best suited to the type of analysis to be performed.Comment: With links to comprehensive, high resolution figures and networks via figshare.co
    • …
    corecore