204 research outputs found

    A survey on artificial intelligence based techniques for diagnosis of hepatitis variants

    Get PDF
    Hepatitis is a dreaded disease that has taken the lives of so many people over the recent past years. The research survey shows that hepatitis viral disease has five major variants referred to as Hepatitis A, B, C, D, and E. Scholars over the years have tried to find an alternative diagnostic means for hepatitis disease using artificial intelligence (AI) techniques in order to save lives. This study extensively reviewed 37 papers on AI based techniques for diagnosing core hepatitis viral disease. Results showed that Hepatitis B (30%) and C (3%) were the only types of hepatitis the AI-based techniques were used to diagnose and properly classified out of the five major types, while (67%) of the paper reviewed diagnosed hepatitis disease based on the different AI based approach but were not classified into any of the five major types. Results from the study also revealed that 18 out of the 37 papers reviewed used hybrid approach, while the remaining 19 used single AI based approach. This shows no significance in terms of technique usage in modeling intelligence into application. This study reveals furthermore a serious gap in knowledge in terms of single hepatitis type prediction or diagnosis in all the papers considered, and recommends that the future road map should be in the aspect of integrating the major hepatitis variants into a single predictive model using effective intelligent machine learning techniques in order to reduce cost of diagnosis and quick treatment of patients

    A Neuro-Fussy Based Model for Diagnosis of Monkeypox Diseases

    Get PDF
    The largest vertebrate viruses known, infecting humans, and other vertebrates are poxviruses including cowpox, vaccinia, variola (smallpox), and monkeypox viruses. Monkeypox was limited to the rain forests of central and western Africa until 2003. A smallpox-like viral infection caused by a virus of zoonotic origin, monkeypox belongs to the genus Orthopoxvirus, family Poxviridae, and sub-family Chordopoxvirinae. Monkeypox has a clinical presentation like ordinary forms of smallpox, including flulike symptoms, fever, malaise, back pain, headache, and characteristic rash. In view of the eradication of smallpox, such symptoms in a monkepox endemic region should be carefully diagnosed. The problem in diagnosing monkeypox lies in the fact that it is clinically indistinguishable from other pox-like illnesses making virus differentiation difficult. In this paper, we present a neuro-fuzzy based model for early diagnosis of monkeypox virus with a differentiation from other pox families

    Tuberculosis Prediction by Machine Learning Techniques

    Get PDF
    Tuberculosis is one of the top reasons of death all over the planet. Mycobacterium tuberculosis, bacteria that infects the lungs, is what causes it. For professionals working in the medical field, accurately identifying and timely predicting tuberculosis are major challenges. The course of treatment also varies from patient to patient since occasionally a patient develops drug resistance. Doctors will be given algorithmic support while using machine learning to help them diagnose, treat patients appropriately, and make quicker and better judgments. This paper discusses the many tuberculosis causes and symptoms as well as how accurate and fast prediction and diagnostic investigations have been carried out in recent years with the aid of machine learning (ML) technique

    From Fuzzy Expert System to Artificial Neural Network: Application to Assisted Speech Therapy

    Get PDF
    This chapter addresses the following question: What are the advantages of extending a fuzzy expert system (FES) to an artificial neural network (ANN), within a computer‐based speech therapy system (CBST)? We briefly describe the key concepts underlying the principles behind the FES and ANN and their applications in assisted speech therapy. We explain the importance of an intelligent system in order to design an appropriate model for real‐life situations. We present data from 1‐year application of these concepts in the field of assisted speech therapy. Using an artificial intelligent system for improving speech would allow designing a training program for pronunciation, which can be individualized based on specialty needs, previous experiences, and the child\u27s prior therapeutical progress. Neural networks add a great plus value when dealing with data that do not normally match our previous designed pattern. Using an integrated approach that combines FES and ANN allows our system to accomplish three main objectives: (1) develop a personalized therapy program; (2) gradually replace some human expert duties; (3) use “self‐learning” capabilities, a component traditionally reserved for humans. The results demonstrate the viability of the hybrid approach in the context of speech therapy that can be extended when designing similar applications

    Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2

    Get PDF
    Currently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitates the diagnosis of the dis-ease quickly and easily. Different machine learning models were designed and compared, being random forest was the algorithm that generated the model with the best performance (90.43% accuracy), which was integrated into a web platform, working with the PIMA dataset, which was validated by specialists from the Peruvian League for the Fight against Diabetes organization. The result was a decrease of (A) 88.28% in the information collection time, (B) 99.99% in the diagnosis time, (C) 44.42% in the diagnosis cost, and (D) 100% in the level of difficulty, concluding that the application of machine learning can significantly optimize the diagnostic process of type 2 diabetes mellitus

    Current Trends in Intelligent Control Neural Networks for Thermal Processing (Foods): Systematic Literature Review

    Get PDF
    Thermal processing is a technique for sterilizing foods through heating at high temperatures. Thermal processing plays a significant role in preserving foods economically, efficiently, reliably, and safely. Control in thermal processing of foods is necessary to avoid any decrease in food quality, i.e., color change, reduced content, sensory quality, and nutrition. Artificial Neural Network (ANN) has been developed as a computing method in research and developments on thermal processing methods to discover one suitable for food processing without damaging food quality. To this date, ANN has been used in food industries for modeling many processes. The paper aims to identify the latest trend in intelligent neural network control for the thermal processing of foods. The paper conducted a systematic literature review with five research questions using Preferred Reporting Items for Systematic Review (PRISMA). According to screening results and article selection, 240 potential articles have fulfilled the inclusion criteria. Then, each article was explored to identify the advantage and the advance of intelligent network control in thermal food processing. It can be concluded that the technology in information and computations of food processing has rapidly developed and advanced through the utilization of a combination of ANN with fuzzy logic and/or genetic algorithms

    Optimasi Derajat Keanggotaan Fuzzy Tsukamoto Menggunakan Algoritma Genetika Untuk Diagnosis Penyakit Sapi Potong

    Get PDF
                    Sistem inferensi fuzzy bisa digunakan untuk diagnosis penyakit pada sapi potong. Untuk mendapatkan akurasi yang tinggi maka batasan fungsi keanggotaan fuzzy perlu ditentukan secara tepat. Penggunaan metode logika fuzzy untuk memperoleh hasil diagnosis penyakit pada sapi potong sesuai pakar berdasarkan batasan gejala penyakit dan aturan-aturan yang diperoleh dari pakar. Batasan tersebut bisa diperbaiki menggunakan Algoritma Genetika untuk mendapatkan akurasi yang lebih baik. Pengujian yang dilakukan pada 51 data dari beberapa gejala penyakit menghasilkan akurasi sebesar 98,04% dengan menggunakan parameter genetika terbaik antara lain ukuran populasi sebesar 80, ukuran generasi sebesar 15, nilai Crossover rate (Cr) sebesar 0,9, dan nilai Mutation rate (Mr) sebesar 0,06. Akurasi tersebut mengalami peningkatan sebesar 3,54% sesudah dilakukannya optimasi pada metode logika fuzzy.Kata kunci: diagnosis penyakit sapi potong, logika fuzzy, Algoritma GenetikaAbstract                Fuzzy inference systems can be used to diagnose cattle disease. Prior to obtaining the most accurate of limitation, fuzzy membership functions must be defined precisely. Thus, the limits will be optimized along with Genetic Algorithm to get more accurate results. The function of fuzzy logic methods in the diagnosis of disease is relied upon the parametres set by experts. Tests that were performed on 51 data from some of the symptoms of the disease resulted in an accuracy of 98.04% using the best genetic parameters with the population size of 80, the size of the generation of 15, crossover rate value of 0.9, and the value of mutation rate of 0.06. The accuracy has increased by 3.54% compare to results before optimization. Keywords: cattle disease diagnosis, fuzzy logic, genetic algorithm

    A Review of Physical Human Activity Recognition Chain Using Sensors

    Get PDF
    In the era of Internet of Medical Things (IoMT), healthcare monitoring has gained a vital role nowadays. Moreover, improving lifestyle, encouraging healthy behaviours, and decreasing the chronic diseases are urgently required. However, tracking and monitoring critical cases/conditions of elderly and patients is a great challenge. Healthcare services for those people are crucial in order to achieve high safety consideration. Physical human activity recognition using wearable devices is used to monitor and recognize human activities for elderly and patient. The main aim of this review study is to highlight the human activity recognition chain, which includes, sensing technologies, preprocessing and segmentation, feature extractions methods, and classification techniques. Challenges and future trends are also highlighted.

    Public Health

    Get PDF
    Public health can be thought of as a series of complex systems. Many things that individual living in high income countries take for granted like the control of infectious disease, clean, potable water, low infant mortality rates require a high functioning systems comprised of numerous actors, locations and interactions to work. Many people only notice public health when that system fails. This book explores several systems in public health including aspects of the food system, health care system and emerging issues including waste minimization in nanosilver. Several chapters address global health concerns including non-communicable disease prevention, poverty and health-longevity medicine. The book also presents several novel methodologies for better modeling and assessment of essential public health issues
    corecore