162 research outputs found

    Blind Search for Optimal Wiener Equalizers Using an Artificial Immune Network Model

    Get PDF
    This work proposes a framework to determine the optimal Wiener equalizer by using an artificial immune network model together with the constant modulus (CM) cost function. This study was primarily motivated by recent theoretical results concerning the CM criterion and its relation to the Wiener approach. The proposed immune-based technique was tested under different channel models and filter orders, and benchmarked against a procedure using a genetic algorithm with niching. The results demonstrated that the proposed strategy has a clear superiority when compared with the more traditional technique. The proposed algorithm presents interesting features from the perspective of multimodal search, being capable of determining the optimal Wiener equalizer in most runs for all tested channels

    A Study on the Suitability of Genetic Algorithm for Adaptive Channel Equalization

    Get PDF
    Adaptive algorithms such as Least-Mean-Square (LMS) based channel equalizer aim to minimize the Intersymbol Interference (ISI) present in the transmission channel. However the adaptive algorithms suffer from long training time and undesirable local minima during training mode. These disadvantages of the adaptive algorithms for channel equalization have been discussed in the literature. In this paper, we propose a new adaptive channel equalizer using Genetic Algorithm (GA) which is essentially a derivative free optimization tool. This algorithm is suitably used to update the weights of the equalizer. The performance of the proposed channel equalizer is evaluated in terms of mean square error (MSE) and convergence rate and is compared with its LMS and RLS counter parts. It is observed that the new adaptive equalizer based GA offer improved performance so far as the accuracy of reception is concerned.DOI:http://dx.doi.org/10.11591/ijece.v2i3.31

    Adaptive non linear system identification and channel equalization usinf functional link artificial neural network

    Get PDF
    In system theory, characterization and identification are fundamental problems. When the plant behavior is completely unknown, it may be characterized using certain model and then, its identification may be carried out with some artificial neural networks(ANN) like multilayer perceptron(MLP) or functional link artificial neural network(FLANN) using some learning rules such as back propagation (BP) algorithm. They offer flexibility, adaptability and versatility, so that a variety of approaches may be used to meet a specific goal, depending upon the circumstances and the requirements of the design specifications. The primary aim of the present thesis is to provide a framework for the systematic design of adaptation laws for nonlinear system identification and channel equalization. While constructing an artificial neural network the designer is often faced with the problem of choosing a network of the right size for the task. The advantages of using a smaller neural network are cheaper cost of computation and better generalization ability. However, a network which is too small may never solve the problem, while a larger network may even have the advantage of a faster learning rate. Thus it makes sense to start with a large network and then reduce its size. For this reason a Genetic Algorithm (GA) based pruning strategy is reported. GA is based upon the process of natural selection and does not require error gradient statistics. As a consequence, a GA is able to find a global error minimum. Transmission bandwidth is one of the most precious resources in digital communication systems. Communication channels are usually modeled as band-limited linear finite impulse response (FIR) filters with low pass frequency response. When the amplitude and the envelope delay response are not constant within the bandwidth of the filter, the channel distorts the transmitted signal causing intersymbol interference (ISI). The addition of noise during propagation also degrades the quality of the received signal. All the signal processing methods used at the receiver's end to compensate the introduced channel distortion and recover the transmitted symbols are referred as channel equalization techniques.When the nonlinearity associated with the system or the channel is more the number of branches in FLANN increases even some cases give poor performance. To decrease the number of branches and increase the performance a two stage FLANN called cascaded FLANN (CFLANN) is proposed.This thesis presents a comprehensive study covering artificial neural network (ANN) implementation for nonlinear system identification and channel equalization. Three ANN structures, MLP, FLANN, CFLANN and their conventional gradient-descent training methods are extensively studied. Simulation results demonstrate that FLANN and CFLANN methods are directly applicable for a large class of nonlinear control systems and communication problems

    Bit-Error-Rate-Minimizing Channel Shortening Using Post-FEQ Diversity Combining and a Genetic Algorithm

    Get PDF
    In advanced wireline or wireless communication systems, i.e., DSL, IEEE 802.11a/g, HIPERLAN/2, etc., a cyclic prefix which is proportional to the channel impulse response is needed to append a multicarrier modulation (MCM) frame for operating the MCM accurately. This prefix is used to combat inter symbol interference (ISI). In some cases, the channel impulse response can be longer than the cyclic prefix (CP). One of the most useful techniques to mitigate this problem is reuse of a Channel Shortening Equalizer (CSE) as a linear preprocessor before the MCM receiver in order to shorten the effective channel length. Channel shortening filter design is a widely examined topic in the literature. Most channel shortening equalizer proposals depend on perfect channel state information (CSI). However, this information may not be available in all situations. In cases where channel state information is not needed, blind adaptive equalization techniques are appropriate. In wireline communication systems (such as DMT), the CSE design is based on maximizing the bit rate, but in wireless systems (OFDM), there is a fixed bit loading algorithm, and the performance metric is Bit Error Rate (BER) minimization. In this work, a CSE is developed for multicarrier and single-carrier cyclic prefixed (SCCP) systems which attempts to minimize the BER. To minimize the BER, a Genetic Algorithm (GA), which is an optimization method based on the principles of natural selection and genetics, is used. If the CSI is shorter than the CP, the equalization can be done by a frequency domain equalizer (FEQ), which is a bank of complex scalars. However, in the literature the adaptive FEQ design has not been well examined. The second phase of this thesis focuses on different types of algorithms for adapting the FEQ and modifying the FEQ architecture to obtain a lower BER. Simulation results show that this modified architecture yields a 20 dB improvement in BER

    Joint transceiver design for MIMO channel shortening.

    Get PDF
    Channel shortening equalizers can be employed to shorten the effective impulse response of a long intersymbol interference (ISI) channel in order, for example, to decrease the computational complexity of a maximum-likelihood sequence estimator (MLSE) or to increase the throughput efficiency of an orthogonal frequency-division multiplexing (OFDM) transmission scheme. In this paper, the issue of joint transmitter–receiver filter design is addressed for shortening multiple-input multiple-output (MIMO) ISI channels. A frequency-domain approach is adopted for the transceiver design which is effectively equivalent to an infinite-length time-domain design. A practical space–frequency waterfilling algorithm is also provided. It is demonstrated that the channel shortening equalizer designed according to the time-domain approach suffers from an error-floor effect. However, the proposed techniques are shown to overcome this problem and outperform the time-domain channel shortening filter design. We also demonstrate that the proposed transceiver design can be considered as a MIMO broadband beamformer with constraints on the time-domain multipath length. Hence, a significant diversity gain could also be achieved by choosing strong eigenmodes of the MIMO channel. It is also found that the proposed frequency-domain methods have considerably low computational complexity as compared with their time-domain counterparts

    An investigation into the performance of a power-of-two coefficient transversal equalizer in a 34Mbit/s QPSK digital radio during frequency-selective fading conditions

    Get PDF
    Bibliography: leaves 82-91.Under certain atmospheric conditions, multipath propagation can occur. The interaction of radio waves arriving at a receiver, having travelled via paths of differing length, results in the phenomenon of frequency-selective fading. This phenomenon manifests as a notch in the received spectrum and causes a severe degradation in the performance of a digital radio system. As the total power in the received bandwidth may be unaffected, the Automatic Gain Control is not able to correct for this distortion, and so other methods are required. The dissertation commences with a summary of the phenomenon of multipath as this provides the context for the investigations which follow. The adaptive equalizer was developed to combat the distortion introduced by frequency-selective fading. It achieves this by applying an estimate of the inverse of the distorting channel's transfer function. The theory on adaptive equalizers has been well established, and a summary of this theory is presented in the form of Wiener Filter theory and the Wiener-Hopf equations. An adaptive equalizer located in a 34MBit/s QPSK digital radio is required to operate at very high speed, and its digital hardware implementation is not a trivial task. In order to reduce the cost and complexity, a compromise was proposed. If the tap weights of the equalizer could be represented by power-of-two binary numbers, the equalizer circuitry can be dramatically simplified. The aim of the dissertation was to investigate the performance of this simplified equalizer structure and to determine whether a power-of-two equalizer was a viable consideration

    Application of wavelets and artificial neural network for indoor optical wireless communication systems

    Get PDF
    Abstract This study investigates the use of error control code, discrete wavelet transform (DWT) and artificial neural network (ANN) to improve the link performance of an indoor optical wireless communication in a physical channel. The key constraints that barricade the realization of unlimited bandwidth in optical wavelengths are the eye-safety issue, the ambient light interference and the multipath induced intersymbol interference (ISI). Eye-safety limits the maximum average transmitted optical power. The rational solution is to use power efficient modulation techniques. Further reduction in transmitted power can be achieved using error control coding. A mathematical analysis of retransmission scheme is investigated for variable length modulation techniques and verified using computer simulations. Though the retransmission scheme is simple to implement, the shortfall in terms of reduced throughput will limit higher code gain. Due to practical limitation, the block code cannot be applied to the variable length modulation techniques and hence the convolutional code is the only possible option. The upper bound for slot error probability of the convolutional coded dual header pulse interval modulation (DH-PIM) and digital pulse interval modulation (DPIM) schemes are calculated and verified using simulations. The power penalty due to fluorescent light interference (FL I) is very high in indoor optical channel making the optical link practically infeasible. A denoising method based on a DWT to remove the FLI from the received signal is devised. The received signal is first decomposed into different DWT levels; the FLI is then removed from the signal before reconstructing the signal. A significant reduction in the power penalty is observed using DWT. Comparative study of DWT based denoising scheme with that of the high pass filter (HPF) show that DWT not only can match the best performance obtain using a HPF, but also offers a reduced complexity and design simplicity. The high power penalty due to multipath induced ISI makes a diffuse optical link practically infeasible at higher data rates. An ANN based linear and DF architectures are investigated to compensation the ISI. Unlike the unequalized cases, the equalized schemes don‘t show infinite power penalty and a significant performance improvement is observed for all modulation schemes. The comparative studies substantiate that ANN based equalizers match the performance of the traditional equalizers for all channel conditions with a reduced training data sequence. The study of the combined effect of the FLI and ISI shows that DWT-ANN based receiver perform equally well in the present of both interference. Adaptive decoding of error control code can offer flexibility of selecting the best possible encoder in a given environment. A suboptimal ?soft‘ sliding block convolutional decoder based on the ANN and a 1/2 rate convolutional code with a constraint length is investigated. Results show that the ANN decoder can match the performance of optimal Viterbi decoder for hard decision decoding but with slightly inferior performance compared to soft decision decoding. This provides a foundation for further investigation of the ANN decoder for convolutional code with higher constraint length values. Finally, the proposed DWT-ANN receiver is practically realized in digital signal processing (DSP) board. The output from the DSP board is compared with the computer simulations and found that the difference is marginal. However, the difference in results doesn‘t affect the overall error probability and identical error probability is obtained for DSP output and computer simulations
    corecore