2,916 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Location and Orientation Optimisation for Spatially Stretched Tripole Arrays Based on Compressive Sensing

    Get PDF
    The design of sparse spatially stretched tripole arrays is an important but also challenging task and this paper proposes for the very first time efficient solutions to this problem. Unlike for the design of traditional sparse antenna arrays, the developed approaches optimise both the dipole locations and orientations. The novelty of the paper consists in formulating these optimisation problems into a form that can be solved by the proposed compressive sensing and Bayesian compressive sensing based approaches. The performance of the developed approaches is validated and it is shown that accurate approximation of a reference response can be achieved with a 67% reduction in the number of dipoles required as compared to an equivalent uniform spatially stretched tripole array, leading to a significant reduction in the cost associated with the resulting arrays

    Decentralized Narrowband and Wideband Spectrum Sensing with Correlated Observations

    Get PDF
    This dissertation evaluates the utility of several approaches to the design of good distributed sensing systems for both narrowband and wideband spectrum sensing problems with correlated sensor observations

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields

    Hierarchical visual perception and two-dimensional compressive sensing for effective content-based color image retrieval

    Get PDF
    Content-based image retrieval (CBIR) has been an active research theme in the computer vision community for over two decades. While the field is relatively mature, significant research is still required in this area to develop solutions for practical applications. One reason that practical solutions have not yet been realized could be due to a limited understanding of the cognitive aspects of the human vision system. Inspired by three cognitive properties of human vision, namely, hierarchical structuring, color perception and embedded compressive sensing, a new CBIR approach is proposed. In the proposed approach, the Hue, Saturation and Value (HSV) color model and the Similar Gray Level Co-occurrence Matrix (SGLCM) texture descriptors are used to generate elementary features. These features then form a hierarchical representation of the data to which a two-dimensional compressive sensing (2D CS) feature mining algorithm is applied. Finally, a weighted feature matching method is used to perform image retrieval. We present a comprehensive set of results of applying our proposed Hierarchical Visual Perception Enabled 2D CS approach using publicly available datasets and demonstrate the efficacy of our techniques when compared with other recently published, state-of-the-art approaches

    Smart Antennas and Intelligent Sensors Based Systems: Enabling Technologies and Applications

    Get PDF
    open access articleThe growing communication and computing capabilities in the devices enlarge the connected world and improve the human life comfort level. The evolution of intelligent sensor networks and smart antennas has led to the development of smart devices and systems for real-time monitoring of various environments. The demand of smart antennas and intelligent sensors significantly increases when dealing with multiuser communication system that needs to be adaptive, especially in unknown adverse environment [1–3]. The smart antennas based arrays are capable of steering the main beam in any desired direction while placing nulls in the unwanted directions. Intelligent sensor networks integration with smart antennas will provide algorithms and interesting application to collect various data of environment to make intelligent decisions [4, 5]. The aim of this special issue is to provide an inclusive vision on the current research in the area of intelligent sensors and smart antenna based systems for enabling various applications and technologies. We cordially invite some researchers to contribute papers that discuss the issues arising in intelligent sensors and smart antenna based system. Hence, this special issue offers the state-of-the-art research in this field

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202
    corecore