68,536 research outputs found

    A genetic approach for long term virtual organization distribution

    Full text link
    Electronic versíon of an article published as International Journal on Artificial Intelligent Tools, Volume 20, issue 2, 2011. 10.1142/S0218213011000152. © World Scientific Publishing Company[EN] An agent-based Virtual Organization is a complex entity where dynamic collections of agents agree to share resources in order to accomplish a global goal or offer a complex service. An important problem for the performance of the Virtual Organization is the distribution of the agents across the computational resources. The final distribution should provide a good load balancing for the organization. In this article, a genetic algorithm is applied to calculate a proper distribution across hosts in an agent-based Virtual Organization. Additionally, an abstract multi-agent system architecture which provides infrastructure for Virtual Organization distribution is introduced. The developed genetic solution employs an elitist crossover operator where one of the children inherits the most promising genetic material from the parents with higher probability. In order to validate the genetic proposal, the designed genetic algorithm has been successfully compared to several heuristics in different scenarios. © 2011 World Scientific Publishing Company.This work is supported by TIN2008-04446, TIN2009-13839-C03-01, CSD2007-00022 and FPU grant AP2008-00600 of the Spanish government, and PROMETEO 2008/051 of the Generalitat Valenciana.Sånchez Anguix, V.; Valero Cubas, S.; García Fornes, AM. (2011). A genetic approach for long term virtual organization distribution. International Journal on Artificial Intelligence Tools. 20(2):271-295. https://doi.org/10.1142/S0218213011000152S27129520

    A Soft Computing Approach to Dynamic Load Balancing in 3GPP LTE

    Get PDF
    A major objective of the 3GPP LTE standard is the provision of high-speed data services. These services must be guaranteed under varying radio propagation conditions, to stochastically distributed mobile users. A necessity for determining and regulating the traffic load of eNodeBs naturally ensues. Load balancing is a self-optimization operation of self-organizing networks (SON). It aims at ensuring an equitable distribution of users in the network. This translates into better user satisfaction and a more efficient use of network resources. Several methods for load balancing have been proposed. Most of the algorithms are based on hard (traditional) computing which does not utilize the tolerance for precision of load balancing. This paper proposes the use of soft computing, precisely adaptive Neuro-fuzzy inference system (ANFIS) model for dynamic QoS aware load balancing in 3GPP LTE. The use of ANFIS offers learning capability of neural network and knowledge representation of fuzzy logic for a load balancing solution that is cost effective and closer to human intuitio

    Integrating the processes in the evolutionary system of domestication

    Get PDF
    Genetics has long been used as a source of evidence to understand domestication origins. A recent shift in the emphasis of archaeological evidence from a rapid transition paradigm of hunter-gatherers to agriculturalists, to a protracted transition paradigm has highlighted how the scientific framework of interpretation of genetic data was quite dependent on archaeological evidence, resulting in a period of discord in which the two evidence types appeared to support different paradigms. Further examination showed that the discriminatory power of the approaches employed in genetics was low, and framed within the rapid paradigm rather than testing it. In order to interpret genetic data under the new protracted paradigm it must be taken into account how that paradigm changes our expectations of genetic diversity. Preliminary examination suggests that a number of features that constituted key evidence in the rapid paradigm are likely to be interpreted very differently in the protracted paradigm. Specifically, in the protracted transition the mode and mechanisms involved in the evolution of the domestication syndrome have become much more influential in the shape of genetic diversity. The result is that numerous factors interacting over several levels of organization in a domestication system need to be taken into account in order to understand the evolution of the process. This presents a complex problem of integration of different data types which is difficult to describe formally. One possible way forward is to use Bayesian approximation approaches that allow complex systems to be measured in a way that does not require such formality

    Designing Conducting Polymers Using Bioinspired Ant Algorithms

    Full text link
    Ant algorithms are inspired in real ants and the main idea is to create virtual ants that travel into the space of possible solution depositing virtual pheromone proportional to how good a specific solution is. This creates a autocatalytic (positive feedback) process that can be used to generate automatic solutions to very difficult problems. In the present work we show that these algorithms can be used coupled to tight-binding hamiltonians to design conducting polymers with pre-specified properties. The methodology is completely general and can be used for a large number of optimization problems in materials science

    Coping with Water Scarcity: What Role for Biotechnologies?

    Get PDF
    At a conference of the FAO Biotechnology Forum in 2007, 78 participants from 24 countries offered their views on agricultural biotechnologies and water scarcity, addressing the pros and cons of various methods and their potential application. These viewpoints are represented in this discussion paper, along with an introductory section that defines the issues to be discussed. Funders in the WASH sector can use this document to educate themselves about the potential gains to be made in supporting different types of scientific research and agricultural technology development

    In silico transitions to multicellularity

    Full text link
    The emergence of multicellularity and developmental programs are among the major problems of evolutionary biology. Traditionally, research in this area has been based on the combination of data analysis and experimental work on one hand and theoretical approximations on the other. A third possibility is provided by computer simulation models, which allow to both simulate reality and explore alternative possibilities. These in silico models offer a powerful window to the possible and the actual by means of modeling how virtual cells and groups of cells can evolve complex interactions beyond a set of isolated entities. Here we present several examples of such models, each one illustrating the potential for artificial modeling of the transition to multicellularity.Comment: 21 pages, 10 figures. Book chapter of Evolutionary transitions to multicellular life (Springer

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    Networking strategies in streptomyces coelicolor

    Get PDF
    We are interested the soil dwelling bacteria Streptomyces coelicolor because its cells grow end to end in a line. New branches have the potential to extend from any point along this line and the result is a network of branches and connections. This is a novel form of colonisation in the bacterial world and it is advantageous for spreading through an environment resourcefully. Networking protocols for communication technologies have similar pressures to be resourceful in terms of time, computing power, and energy. In this preliminary investigation we design a computer model of the biological system to understand its limitations and strategies for survival. The decentralised capacity for organisation of both the bacterial system and the model reflects well on the now-popular conventions for path finding and ad hoc network building in human technologies. The project will ultimately become a comparison of strategies between nature and the man-made
    • 

    corecore