1,268 research outputs found

    A Grey-Box Approach to Automated Mechanism Design

    Get PDF
    Auctions play an important role in electronic commerce, and have been used to solve problems in distributed computing. Automated approaches to designing effective auction mechanisms are helpful in reducing the burden of traditional game theoretic, analytic approaches and in searching through the large space of possible auction mechanisms. This paper presents an approach to automated mechanism design (AMD) in the domain of double auctions. We describe a novel parametrized space of double auctions, and then introduce an evolutionary search method that searches this space of parameters. The approach evaluates auction mechanisms using the framework of the TAC Market Design Game and relates the performance of the markets in that game to their constituent parts using reinforcement learning. Experiments show that the strongest mechanisms we found using this approach not only win the Market Design Game against known, strong opponents, but also exhibit desirable economic properties when they run in isolation.Comment: 18 pages, 2 figures, 2 tables, and 1 algorithm. Extended abstract to appear in the proceedings of AAMAS'201

    Born to trade: a genetically evolved keyword bidder for sponsored search

    Get PDF
    In sponsored search auctions, advertisers choose a set of keywords based on products they wish to market. They bid for advertising slots that will be displayed on the search results page when a user submits a query containing the keywords that the advertiser selected. Deciding how much to bid is a real challenge: if the bid is too low with respect to the bids of other advertisers, the ad might not get displayed in a favorable position; a bid that is too high on the other hand might not be profitable either, since the attracted number of conversions might not be enough to compensate for the high cost per click. In this paper we propose a genetically evolved keyword bidding strategy that decides how much to bid for each query based on historical data such as the position obtained on the previous day. In light of the fact that our approach does not implement any particular expert knowledge on keyword auctions, it did remarkably well in the Trading Agent Competition at IJCAI2009

    Automated Auction Mechanism Design with Competing Markets

    Full text link
    Resource allocation is a major issue in multiple areas of computer science. Despite the wide range of resource types across these areas, for example real commodities in e-commerce and computing resources in distributed computing, auctions are commonly used in solving the optimization problems involved in these areas, since well designed auctions achieve desirable economic outcomes. Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. Following this line of work, we present what we call a grey-box approach to automated auction mechanism design using reinforcement learning and evolutionary computation methods. We first describe a new strategic game, called \cat, which were designed to run multiple markets that compete to attract traders and make profit. The CAT game enables us to address the imbalance between prior work in this field that studied auctions in an isolated environment and the actual competitive situation that markets face. We then define a novel, parameterized framework for auction mechanisms, and present a classification of auction rules with each as a building block fitting into the framework. Finally we evaluate the viability of building blocks, and acquire auction mechanisms by combining viable blocks through iterations of CAT games. We carried out experiments to examine the effectiveness of the grey-box approach. The best mechanisms we learnt were able to outperform the standard mechanisms against which learning took place and carefully hand-coded mechanisms which won tournaments based on the CAT game. These best mechanisms were also able to outperform mechanisms from the literature even when the evaluation did not take place in the context of CAT games. These results suggest that the grey-box approach can generate robust double auction mechanisms and, as a consequence, is an effective approach to automated mechanism design. The contributions of this work are two-fold. First, the grey-box approach helps to design better auction mechanisms which can play a central role in solutions to resource allocation problems in various application domains of computer science. Second, the parameterized view and the reinforcement learning-based search method can be used in other strategic, competitive situations where decision making processes are complex and difficult to design and evaluate manually

    How to trade electricity flexibility using artificial intelligence - An integrated algorithmic framework

    Get PDF
    In course of the energy transition, the growing share of Renewable Energy Sources (RES) makes electricity generation more decentralized and intermittent. This increases the relevance of exploiting flexibility potentials that help balancing intermittent RES supply and demand and, thus, contribute to overall system resilience. Digital technologies, in the form of automated trading algorithms, may considerably contribute to flexibility exploitation, as they enable faster and more accurate market interactions. In this paper, we develop an integrated algorithmic framework that finds an optimal trading strategy for flexibility on multiple markets. Hence, our work supports the trading of flexibility in a multi-market environment that results in enhanced market integration and harmonization of economically traded and physically delivered electricity, which finally promotes resilience in highly complex electricity systems

    Multi-Robot Complete Coverage Using Directional Constraints

    Get PDF
    Complete coverage relies on a path planning algorithm that will move one or more robots, including the actuator, sensor, or body of the robot, over the entire environment. Complete coverage of an unknown environment is used in applications like automated vacuum cleaning, carpet cleaning, lawn mowing, chemical or radioactive spill detection and cleanup, and humanitarian de-mining. The environment is typically decomposed into smaller areas and then assigned to individual robots to cover. The robots typically use the Boustrophedon motion to cover the cells. The location and size of obstacles in the environment are unknown beforehand. An online algorithm using sensor-based coverage with unlimited communication is typically used to plan the path for the robots. For certain applications, like robotic lawn mowing, a pattern might be desirable over a random irregular pattern for the coverage operation. Assigning directional constraints to the cells can help achieve the desired pattern if the path planning part of the algorithm takes the directional constraints into account. The goal of this dissertation is to adapt the distributed coverage algorithm with unrestricted communication developed by Rekleitis et al. (2008) so that it can be used to solve the complete coverage problem with directional constraints in unknown environments while minimizing repeat coverage. It is a sensor-based approach that constructs a cellular decomposition while covering the unknown environment. The new algorithm takes directional constraints into account during the path planning phase. An implementation of the algorithm was evaluated in simulation software and the results from these experiments were compared against experiments conducted by Rekleitis et al. (2008) and with an implementation of their distributed coverage algorithm. The results of this study confirm that directional constraints can be added to the complete coverage algorithm using multiple robots without any significant impact on performance. The high-level goals of complete coverage were still achieved. The work was evenly distributed between the robots to reduce the time required to cover the cells
    corecore