1,176 research outputs found

    A survey of variants and extensions of the resource-constrained project scheduling problem

    Get PDF
    The resource-constrained project scheduling problem (RCPSP) consists of activities that must be scheduled subject to precedence and resource constraints such that the makespan is minimized. It has become a well-known standard problem in the context of project scheduling which has attracted numerous researchers who developed both exact and heuristic scheduling procedures. However, it is a rather basic model with assumptions that are too restrictive for many practical applications. Consequently, various extensions of the basic RCPSP have been developed. This paper gives an overview over these extensions. The extensions are classified according to the structure of the RCPSP. We summarize generalizations of the activity concept, of the precedence relations and of the resource constraints. Alternative objectives and approaches for scheduling multiple projects are discussed as well. In addition to popular variants and extensions such as multiple modes, minimal and maximal time lags, and net present value-based objectives, the paper also provides a survey of many less known concepts. --project scheduling,modeling,resource constraints,temporal constraints,networks

    Exact and heuristic reactive planning procedures for multi-mode resource-constrained projects.

    Get PDF
    The multi-mode resource-constrained project scheduling problem (MRCPSP) involves the determination of a baseline schedule of the project activities, which can be executed in multiple modes, satisfying the precedence relations and resource constraints while minimizing the project duration. During the execution of the project, the baseline schedule may become infeasible due to activity duration and resource disruptions. We propose and evaluate a number of dedicated exact reactive scheduling procedures as well as a tabu search heuristic for repairing a disrupted schedule. We report on promising computational results obtained on a set of benchmark problems.Project scheduling; Uncertainty; Reactive scheduling; Multi-mode RCPSP;

    The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations

    Full text link
    In scheduling, estimations are affected by the imprecision of limited information on future events, and the reduction in the number and level of detail of activities. Overlapping of processes and activities requires the study of their continuity, along with analysis of the risks associated with imprecision. In this line, this paper proposes a fuzzy heuristic model for the Project Scheduling Problem with flows and minimal feeding, time and work Generalized Precedence Relations with a realistic approach to overlapping, in which the continuity of processes and activities is allowed in a discretionary way. This fuzzy algorithm handles the balance of process flows, and computes the optimal fragmentation of tasks, avoiding the interruption of the critical path and reverse criticality. The goodness of this approach is tested on several problems found in the literature; furthermore, an example of a 15-story building was used to compare the better performance of the algorithm implemented in Visual Basic for Applications (Excel) over that same example input in Primavera© P6 Professional V8.2.0, using five different scenarios.This research was supported by the FAPA program of Universidad de Los Andes, Colombia. The authors would like to thank the research group of Construction Engineering and Management (INgeco) of Universidad de Los Andes, and the five anonymous referees for their helpful and constructive suggestions.Ponz Tienda, JL.; Pellicer Armiñana, E.; Benlloch Marco, J.; Andrés Romano, C. (2015). The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations. Computer-Aided Civil and Infrastructure Engineering. 30(11):872-891. doi:10.1111/mice.12166S8728913011Adeli, H., & Park, H. S. (1995). Optimization of space structures by neural dynamics. Neural Networks, 8(5), 769-781. doi:10.1016/0893-6080(95)00026-vAdeli, H., & Karim, A. (1997). Scheduling/Cost Optimization and Neural Dynamics Model for Construction. Journal of Construction Engineering and Management, 123(4), 450-458. doi:10.1061/(asce)0733-9364(1997)123:4(450)Adeli, H., & Wu, M. (1998). Regularization Neural Network for Construction Cost Estimation. Journal of Construction Engineering and Management, 124(1), 18-24. doi:10.1061/(asce)0733-9364(1998)124:1(18)Alarcón, L. F., Ashley, D. B., de Hanily, A. S., Molenaar, K. R., & Ungo, R. (2011). Risk Planning and Management for the Panama Canal Expansion Program. Journal of Construction Engineering and Management, 137(10), 762-771. doi:10.1061/(asce)co.1943-7862.0000317Ammar, M. A. (2013). LOB and CPM Integrated Method for Scheduling Repetitive Projects. Journal of Construction Engineering and Management, 139(1), 44-50. doi:10.1061/(asce)co.1943-7862.0000569Arditi, D., & Bentotage, S. N. (1996). System for Scheduling Highway Construction Projects. Computer-Aided Civil and Infrastructure Engineering, 11(2), 123-139. doi:10.1111/j.1467-8667.1996.tb00316.xBai, L., Yan, L., & Ma, Z. M. (2014). Querying fuzzy spatiotemporal data using XQuery. Integrated Computer-Aided Engineering, 21(2), 147-162. doi:10.3233/ica-130454Ballesteros-Pérez, P., González-Cruz, M. C., Cañavate-Grimal, A., & Pellicer, E. (2013). Detecting abnormal and collusive bids in capped tendering. Automation in Construction, 31, 215-229. doi:10.1016/j.autcon.2012.11.036Bartusch, M., Möhring, R. H., & Radermacher, F. J. (1988). Scheduling project networks with resource constraints and time windows. Annals of Operations Research, 16(1), 199-240. doi:10.1007/bf02283745Bianco, L., & Caramia, M. (2011). Minimizing the completion time of a project under resource constraints and feeding precedence relations: a Lagrangian relaxation based lower bound. 4OR, 9(4), 371-389. doi:10.1007/s10288-011-0168-6Bonnal, P., Gourc, D., & Lacoste, G. (2004). Where Do We Stand with Fuzzy Project Scheduling? Journal of Construction Engineering and Management, 130(1), 114-123. doi:10.1061/(asce)0733-9364(2004)130:1(114)Brunelli, M., & Mezei, J. (2013). How different are ranking methods for fuzzy numbers? A numerical study. International Journal of Approximate Reasoning, 54(5), 627-639. doi:10.1016/j.ijar.2013.01.009Buckley, J. J., & Eslami, E. (2002). An Introduction to Fuzzy Logic and Fuzzy Sets. doi:10.1007/978-3-7908-1799-7Castro-Lacouture, D., Süer, G. A., Gonzalez-Joaqui, J., & Yates, J. K. (2009). Construction Project Scheduling with Time, Cost, and Material Restrictions Using Fuzzy Mathematical Models and Critical Path Method. Journal of Construction Engineering and Management, 135(10), 1096-1104. doi:10.1061/(asce)0733-9364(2009)135:10(1096)Chanas, S., & Kamburowski, J. (1981). The use of fuzzy variables in pert. Fuzzy Sets and Systems, 5(1), 11-19. doi:10.1016/0165-0114(81)90030-0In Seong Chang, Yasuhiro Tsujimura, Mitsuo Gen, & Tatsumi Tozawa. (1995). An efficient approach for large scale project planning based on fuzzy Delphi method. Fuzzy Sets and Systems, 76(3), 277-288. doi:10.1016/0165-0114(94)00385-4Chen, C.-T., & Huang, S.-F. (2007). Applying fuzzy method for measuring criticality in project network. Information Sciences, 177(12), 2448-2458. doi:10.1016/j.ins.2007.01.035Shyi-Ming Chen, & Tao-Hsing Chang. (2001). Finding multiple possible critical paths using fuzzy PERT. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 31(6), 930-937. doi:10.1109/3477.969496Damci, A., Arditi, D., & Polat, G. (2013). Resource Leveling in Line-of-Balance Scheduling. Computer-Aided Civil and Infrastructure Engineering, 28(9), 679-692. doi:10.1111/mice.12038Dell’Orco, M., & Mellano, M. (2013). A New User-Oriented Index, Based on a Fuzzy Inference System, for Quality Evaluation of Rural Roads. Computer-Aided Civil and Infrastructure Engineering, 28(8), 635-647. doi:10.1111/mice.12021Deng, H. (2014). Comparing and ranking fuzzy numbers using ideal solutions. Applied Mathematical Modelling, 38(5-6), 1638-1646. doi:10.1016/j.apm.2013.09.012De Reyck, B., & Herroelen, willy. (1998). A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 111(1), 152-174. doi:10.1016/s0377-2217(97)00305-6De Reyck, B., & Herroelen, W. (1999). The multi-mode resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 119(2), 538-556. doi:10.1016/s0377-2217(99)00151-4Dubois, D., Fargier, H., & Galvagnon, V. (2003). On latest starting times and floats in activity networks with ill-known durations. European Journal of Operational Research, 147(2), 266-280. doi:10.1016/s0377-2217(02)00560-xElmaghraby, S. E., & Kamburowski, J. (1992). The Analysis of Activity Networks Under Generalized Precedence Relations (GPRs). Management Science, 38(9), 1245-1263. doi:10.1287/mnsc.38.9.1245Fondahl , J. W. 1961 A Non-Computer Approach to the Critical Path Method for the Construction IndustryFougères, A.-J., & Ostrosi, E. (2013). Fuzzy agent-based approach for consensual design synthesis in product configuration. Integrated Computer-Aided Engineering, 20(3), 259-274. doi:10.3233/ica-130434Gil-Aluja, J. (2004). Fuzzy Sets in the Management of Uncertainty. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39699-4Hajdu, M. (1997). Network Scheduling Techniques for Construction Project Management. Nonconvex Optimization and Its Applications. doi:10.1007/978-1-4757-5951-8Harris, R. B., & Ioannou, P. G. (1998). Scheduling Projects with Repeating Activities. Journal of Construction Engineering and Management, 124(4), 269-278. doi:10.1061/(asce)0733-9364(1998)124:4(269)Hejducki, Z. (2004). Sequencing problems in methods of organising construction processes. Engineering, Construction and Architectural Management, 11(1), 20-32. doi:10.1108/09699980410512638Hebert, J. E., & Deckro, R. F. (2011). Combining contemporary and traditional project management tools to resolve a project scheduling problem. Computers & Operations Research, 38(1), 21-32. doi:10.1016/j.cor.2009.12.004Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289-306. doi:10.1016/j.ejor.2004.04.002IBM 1968Jahani, E., Muhanna, R. L., Shayanfar, M. A., & Barkhordari, M. A. (2013). Reliability Assessment with Fuzzy Random Variables Using Interval Monte Carlo Simulation. Computer-Aided Civil and Infrastructure Engineering, 29(3), 208-220. doi:10.1111/mice.12028Karim, A., & Adeli, H. (1999). OO Information Model for Construction Project Management. Journal of Construction Engineering and Management, 125(5), 361-367. doi:10.1061/(asce)0733-9364(1999)125:5(361)Karim, A., & Adeli, H. (1999). CONSCOM: An OO Construction Scheduling and Change Management System. Journal of Construction Engineering and Management, 125(5), 368-376. doi:10.1061/(asce)0733-9364(1999)125:5(368)KARIM, A., & ADELI, H. (1999). A new generation software for construction scheduling and management. Engineering, Construction and Architectural Management, 6(4), 380-390. doi:10.1108/eb021126Kim, S.-G. (2012). CPM Schedule Summarizing Function of the Beeline Diagramming Method. Journal of Asian Architecture and Building Engineering, 11(2), 367-374. doi:10.3130/jaabe.11.367Kis, T. (2005). A branch-and-cut algorithm for scheduling of projects with variable-intensity activities. Mathematical Programming, 103(3), 515-539. doi:10.1007/s10107-004-0551-6Kolisch, R., & Sprecher, A. (1997). PSPLIB - A project scheduling problem library. European Journal of Operational Research, 96(1), 205-216. doi:10.1016/s0377-2217(96)00170-1Krishnan, V., Eppinger, S. D., & Whitney, D. E. (1997). A Model-Based Framework to Overlap Product Development Activities. Management Science, 43(4), 437-451. doi:10.1287/mnsc.43.4.437LEACHMAN, R. C., DTNCERLER, A., & KIM, S. (1990). Resource-Constrained Scheduling of Projects with Variable-Intensity Activities. IIE Transactions, 22(1), 31-40. doi:10.1080/07408179008964155Lim, T.-K., Yi, C.-Y., Lee, D.-E., & Arditi, D. (2014). Concurrent Construction Scheduling Simulation Algorithm. Computer-Aided Civil and Infrastructure Engineering, 29(6), 449-463. doi:10.1111/mice.12073Long, L. D., & Ohsato, A. (2008). Fuzzy critical chain method for project scheduling under resource constraints and uncertainty. International Journal of Project Management, 26(6), 688-698. doi:10.1016/j.ijproman.2007.09.012Lootsma, F. A. (1989). Stochastic and fuzzy Pert. European Journal of Operational Research, 43(2), 174-183. doi:10.1016/0377-2217(89)90211-7Malcolm, D. G., Roseboom, J. H., Clark, C. E., & Fazar, W. (1959). Application of a Technique for Research and Development Program Evaluation. Operations Research, 7(5), 646-669. doi:10.1287/opre.7.5.646Maravas, A., & Pantouvakis, J.-P. (2011). Fuzzy Repetitive Scheduling Method for Projects with Repeating Activities. Journal of Construction Engineering and Management, 137(7), 561-564. doi:10.1061/(asce)co.1943-7862.0000319PONZ TIENDA, J. L., BENLLOCH MARCO, J., ANDRÉS ROMANO, C., & SENABRE, D. (2011). Un algoritmo matricial RUPSP / GRUPSP «sin interrupción» para la planificación de la producción bajo metodología Lean Construction basado en procesos productivos. Revista de la construcción, 10(2), 90-103. doi:10.4067/s0718-915x2011000200009Ponz-Tienda, J. L., Pellicer, E., & Yepes, V. (2012). Complete fuzzy scheduling and fuzzy earned value management in construction projects. Journal of Zhejiang University SCIENCE A, 13(1), 56-68. doi:10.1631/jzus.a1100160Ponz-Tienda, J. L., Yepes, V., Pellicer, E., & Moreno-Flores, J. (2013). The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29, 161-172. doi:10.1016/j.autcon.2012.10.003Prade, H. (1979). Using fuzzy set theory in a scheduling problem: A case study. Fuzzy Sets and Systems, 2(2), 153-165. doi:10.1016/0165-0114(79)90022-8Quintanilla, S., Pérez, Á., Lino, P., & Valls, V. (2012). Time and work generalised precedence relationships in project scheduling with pre-emption: An application to the management of Service Centres. European Journal of Operational Research, 219(1), 59-72. doi:10.1016/j.ejor.2011.12.018Rommelfanger, H. J. (1994). Network analysis and information flow in fuzzy environment. Fuzzy Sets and Systems, 67(1), 119-128. doi:10.1016/0165-0114(94)90212-7Senouci, A. B., & Adeli, H. (2001). Resource Scheduling Using Neural Dynamics Model of Adeli and Park. Journal of Construction Engineering and Management, 127(1), 28-34. doi:10.1061/(asce)0733-9364(2001)127:1(28)Seppänen, O., Evinger, J., & Mouflard, C. (2014). Effects of the location-based management system on production rates and productivity. Construction Management and Economics, 32(6), 608-624. doi:10.1080/01446193.2013.853881Shi, Q., & Blomquist, T. (2012). A new approach for project scheduling using fuzzy dependency structure matrix. International Journal of Project Management, 30(4), 503-510. doi:10.1016/j.ijproman.2011.11.003Srour, I. M., Abdul-Malak, M.-A. U., Yassine, A. A., & Ramadan, M. (2013). A methodology for scheduling overlapped design activities based on dependency information. Automation in Construction, 29, 1-11. doi:10.1016/j.autcon.2012.08.001Valls, V., & Lino, P. (2001). Annals of Operations Research, 102(1/4), 17-37. doi:10.1023/a:1010941729204Valls, V., Mart�, R., & Lino, P. (1996). A heuristic algorithm for project scheduling with splitting allowed. Journal of Heuristics, 2(1), 87-104. doi:10.1007/bf00226294Wang, Y.-M., Yang, J.-B., Xu, D.-L., & Chin, K.-S. (2006). On the centroids of fuzzy numbers. Fuzzy Sets and Systems, 157(7), 919-926. doi:10.1016/j.fss.2005.11.006Wiest, J. D. (1981). Precedence diagramming method: Some unusual characteristics and their implications for project managers. Journal of Operations Management, 1(3), 121-130. doi:10.1016/0272-6963(81)90015-2Yan, L., & Ma, Z. M. (2013). Conceptual design of object-oriented databases for fuzzy engineering information modeling. Integrated Computer-Aided Engineering, 20(2), 183-197. doi:10.3233/ica-130427Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZeng, Z., Xu, J., Wu, S., & Shen, M. (2014). Antithetic Method-Based Particle Swarm Optimization for a Queuing Network Problem with Fuzzy Data in Concrete Transportation Systems. Computer-Aided Civil and Infrastructure Engineering, 29(10), 771-800. doi:10.1111/mice.12111Zhang, X., Li, Y., Zhang, S., & Schlick, C. M. (2013). Modelling and simulation of the task scheduling behavior in collaborative product development process. Integrated Computer-Aided Engineering, 20(1), 31-44. doi:10.3233/ica-12041

    Robust long-term production planning

    Get PDF

    An integrated approach for requirement selection and scheduling in software release planning

    Get PDF
    It is essential for product software companies to decide which requirements should be included in the next release and to make an appropriate time plan of the development project. Compared to the extensive research done on requirement selection, very little research has been performed on time scheduling. In this paper, we introduce two integer linear programming models that integrate time scheduling into software release planning. Given the resource and precedence constraints, our first model provides a schedule for developing the requirements such that the project duration is minimized. Our second model combines requirement selection and scheduling, so that it not only maximizes revenues but also simultaneously calculates an on-time-delivery project schedule. Since requirement dependencies are essential for scheduling the development process, we present a more detailed analysis of these dependencies. Furthermore, we present two mechanisms that facilitate dynamic adaptation for over-estimation or under-estimation of revenues or processing time, one of which includes the Scrum methodology. Finally, several simulations based on real-life data are performed. The results of these simulations indicate that requirement dependency can significantly influence the requirement selection and the corresponding project plan. Moreover, the model for combined requirement selection and scheduling outperforms the sequential selection and scheduling approach in terms of efficiency and on-time delivery. \u

    ROBUST RESOURCE INVESTMENT PROBLEM WITH TIME-DEPENDENT RESOURCE COST AND TARDINESS PENALTY

    Get PDF
    The Resource Investment Problem (RIP) is a variant of the well-known Resource Constraint Project Scheduling Problem (RCPSP) that requires finding the optimal resource allocation, given a preset completion date, with the objective of minimizing the total cost. The practical relevance of RIP is very obvious; since the decision maker (the project manager for example) wants to know what resources are required to achieve the targeted project completion date. RIP helps to decide the amount of investment in resources that yield the optimal solution, in addition to the optimal tradeoff between completion time and resource investment. In practice, most of the projects are associated with due dates beyond which a tardiness penalty may be applied. To avoid the tardiness penalty, project managers sometimes decide to add more resources, thereby increasing resource investment cost, to the project to finish earlier. In this thesis the (RIP) has been extended to consider time-depended resource cost instead of time-independent resource cost in the classical RIP. The problem was named Resource Investment Problem with Time-Dependent Resource Cost and Tardiness Penalty, abbreviated as (RIP-TDRC). A mathematical model was introduced to simultaneously find the optimal resource assignment and activity staring times. The objective is to minimize the sum of the resources and tardiness cost. Two versions of this problem are addressed in this thesis: the deterministic version of RIP-TDRC and the stochastic version. For the latter, it is assumed that the activity durations are subject to many uncertainties such as (bad weather conditions, material shortage, employee’s absences …etc.). To solve this problem, a simulation-optimization based algorithm is proposed. This algorithm solves the deterministic problem version iteratively through all possible project completion times and simulates the project considering the uncertainties to find the optimal solution. The performance of the proposed algorithm and the effect of some problem parameters on the solution are assessed through computational experiments. The experiments revealed the usefulness of the algorithm in finding relatively robust solution for small problem sizes

    Dynamic scheduling model for the construction industry

    Get PDF
    Purpose:Basic project control through traditional methods is not sufficient to manage the majority of realtime events in most construction projects. This paper proposes a Dynamic Scheduling (DS) model that utilizes multi-objective optimization of cost, time, resources and cashflow, throughout project construction.Design/methodology/approach:Upon reviewing the topic of Dynamic Scheduling, a worldwide Internet survey with 364 respondents was conducted to define end-user requirements. The model was formulated and solution algorithms discussed. Verification was reported using predefined problem sets and a real-life case. Validation was performed via feedback from industry experts.Findings:The need for multi-objective dynamic software optimization of construction schedules and the ability to choose among a set of optimal alternatives were highlighted. Model verification through well-known test cases and a real-life project case study showed that the model successfully achieved the required dynamic functionality whether under the small solved example or under the complex case study. The model was validated for practicality, optimization of various DS schedule quality gates, ease of use, and software integration with contemporary project management practices.Practical/Social implications:Optimized real-time scheduling can provide better resources management including labour utilization and cost efficiency. Furthermore, DS contributes to optimum materials procurement, thus minimizing waste.Originality/value:The paper illustrates the importance of DS in construction, identifies the user needs, and overviews the development, verification and validation of a model that supports the generation of high quality schedules beneficial to large scale projects.</div

    Optimal resource allocation in stochastic activity networks via the electromagnetism approach: a platform implementation in Java

    Get PDF
    An optimal resource allocation approach to stochastic multimodal projects had been previously developed by applying a Dynamic Programming model which proved to be very demanding computationally. A new approach, the Electromagnetism-like Mechanism, has also been adopted and implemented in Mat lab, to solve this problem. This paper presents the implementation of the Electromagnetism approach using an Object Oriented language, Java, and a distributed version to be run in a computer network, in order to take advantage of available computational resources.info:eu-repo/semantics/publishedVersio

    Airport under Control:Multi-agent scheduling for airport ground handling

    Get PDF

    A hyper-heuristic based ensemble genetic programming approach for stochastic resource constrained project scheduling problem

    Get PDF
    In project scheduling studies, to the best of our knowledge, the hyper-heuristic collaborative scheduling is first-time applied to project scheduling with random activity durations. A hyper-heuristic based ensemble genetic programming (HH-EGP) method is proposed for solving stochastic resource constrained project scheduling problem (SRCPSP) by evolving an ensemble of priority rules (PRs). The proposed approach features with (1) integrating the critical path method into the resource-based policy class to generate schedules; (2) improving the existing single hyper-heuristic project scheduling research to construct a suitable solution space for solving SRCPSP; and (3) bettering genetic evolution of each subpopulation from a decision ensemble with three different local searches in corporation with discriminant mutation and discriminant population renewal. In addition, a sequence voting mechanism is designed to deal with collaborative decision-making in the scheduling process for SRCPSP. The benchmark PSPLIB is performed to verify the advantage of the HH-EGP over heuristics, meta-heuristics and the single hyper-heuristic approaches
    corecore