6,336 research outputs found

    Mode-Based versus Activity-Based Search for a Nonredundant Resolution of the Multimode Resource-Constrained Project Scheduling Problem

    Get PDF
    [EN] This paper addresses an energy-based extension of the Multimode Resource-Constrained Project Scheduling Problem (MRCPSP) called MRCPSP-ENERGY. This extension considers the energy consumption as an additional resource that leads to different execution modes (and durations) of the activities. Consequently, different schedules can be obtained. The objective is to maximize the efficiency of the project, which takes into account the minimization of both makespan and energy consumption. This is a well-known NP-hard problem, such that the application of metaheuristic techniques is necessary to address real-size problems in a reasonable time. This paper shows that the Activity List representation, commonly used in metaheuristics, can lead to obtaining many redundant solutions, that is, solutions that have different representations but are in fact the same. This is a serious disadvantage for a search procedure. We propose a genetic algorithm(GA) for solving the MRCPSP-ENERGY, trying to avoid redundant solutions by focusing the search on the execution modes, by using the Mode List representation. The proposed GA is evaluated on different instances of the PSPLIB-ENERGY library and compared to the results obtained by both exact methods and approximate methods reported in the literature. This library is an extension of the well-known PSPLIB library, which contains MRCPSP-ENERGY test cases.This paper has been partially supported by the Spanish Research Projects TIN2013-46511-C2-1-P and TIN2016-80856-R.Morillo-Torres, D.; Barber, F.; Salido, MA. (2017). Mode-Based versus Activity-Based Search for a Nonredundant Resolution of the Multimode Resource-Constrained Project Scheduling Problem. Mathematical Problems in Engineering. 2017:1-15. https://doi.org/10.1155/2017/4627856S1152017Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271. doi:10.1080/00207540701450013Hartmann, S., & Sprecher, A. (1996). A note on «hierarchical models for multi-project planning and scheduling». European Journal of Operational Research, 94(2), 377-383. doi:10.1016/0377-2217(95)00158-1Christofides, N., Alvarez-Valdes, R., & Tamarit, J. M. (1987). Project scheduling with resource constraints: A branch and bound approach. European Journal of Operational Research, 29(3), 262-273. doi:10.1016/0377-2217(87)90240-2Zhu, G., Bard, J. F., & Yu, G. (2006). A Branch-and-Cut Procedure for the Multimode Resource-Constrained Project-Scheduling Problem. INFORMS Journal on Computing, 18(3), 377-390. doi:10.1287/ijoc.1040.0121Kolisch, R., & Hartmann, S. (1999). Heuristic Algorithms for the Resource-Constrained Project Scheduling Problem: Classification and Computational Analysis. International Series in Operations Research & Management Science, 147-178. doi:10.1007/978-1-4615-5533-9_7Józefowska, J., Mika, M., Różycki, R., Waligóra, G., & Węglarz, J. (2001). Annals of Operations Research, 102(1/4), 137-155. doi:10.1023/a:1010954031930Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European Journal of Operational Research, 149(2), 268-281. doi:10.1016/s0377-2217(02)00761-0Alcaraz, J., Maroto, C., & Ruiz, R. (2003). Solving the Multi-Mode Resource-Constrained Project Scheduling Problem with genetic algorithms. Journal of the Operational Research Society, 54(6), 614-626. doi:10.1057/palgrave.jors.2601563Zhang, H., Tam, C. M., & Li, H. (2006). Multimode Project Scheduling Based on Particle Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 21(2), 93-103. doi:10.1111/j.1467-8667.2005.00420.xJarboui, B., Damak, N., Siarry, P., & Rebai, A. (2008). A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and Computation, 195(1), 299-308. doi:10.1016/j.amc.2007.04.096Li, H., & Zhang, H. (2013). Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints. Automation in Construction, 35, 431-438. doi:10.1016/j.autcon.2013.05.030Lova, A., Tormos, P., Cervantes, M., & Barber, F. (2009). An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. International Journal of Production Economics, 117(2), 302-316. doi:10.1016/j.ijpe.2008.11.002Peteghem, V. V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 201(2), 409-418. doi:10.1016/j.ejor.2009.03.034Węglarz, J., Józefowska, J., Mika, M., & Waligóra, G. (2011). Project scheduling with finite or infinite number of activity processing modes – A survey. European Journal of Operational Research, 208(3), 177-205. doi:10.1016/j.ejor.2010.03.037Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research, 174(1), 23-37. doi:10.1016/j.ejor.2005.01.065Debels, D., De Reyck, B., Leus, R., & Vanhoucke, M. (2006). A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. European Journal of Operational Research, 169(2), 638-653. doi:10.1016/j.ejor.2004.08.020Paraskevopoulos, D. C., Tarantilis, C. D., & Ioannou, G. (2012). Solving project scheduling problems with resource constraints via an event list-based evolutionary algorithm. Expert Systems with Applications, 39(4), 3983-3994. doi:10.1016/j.eswa.2011.09.062Drexl, A. (1991). Scheduling of Project Networks by Job Assignment. Management Science, 37(12), 1590-1602. doi:10.1287/mnsc.37.12.1590BOCTOR, F. F. (1996). Resource-constrained project scheduling by simulated annealing. International Journal of Production Research, 34(8), 2335-2351. doi:10.1080/0020754960890502

    A genetic algorithm for the project scheduling with the resource constraints

    Get PDF
    The resource-constrained project scheduling problem (RCPSP) has received the attention of many researchers because it can be applied in a wide variety of real production and construction projects. This paper presents a genetic algorithm (GA) solving the RCPSP with the objective function of minimizing makespan. Standard genetic algorithm has to be adapted for project scheduling with precedence constraints. Therefore, an initial population was generated by a random procedure which produces feasible solutions (permutation of jobs fulfilling precedence constraints). Besides, all implemented genetic operators have taken sequential relationships in a project into consideration. Finally, we have demonstrated the performance and accuracy of the proposed algorithm. Computational experiments were performed using a set of 960 standard problem instances from Project Scheduling Problem LIBrary (PSPLIB) presented by Kolisch and Sprecher [1]. We used 480 problems consisting of 30 jobs and 480 90-activity instances. We have tested effectiveness of various combinations of parameters, genetic operators to find the best configuration of GA. The computational results validate the good effectiveness of our genetic algorithm

    Multi-project scheduling with 2-stage decomposition

    Get PDF
    A non-preemptive, zero time lag multi-project scheduling problem with multiple modes and limited renewable and nonrenewable resources is considered. A 2-stage decomposition approach is adopted to formulate the problem as a hierarchy of 0-1 mathematical programming models. At stage one, each project is reduced to a macro-activity with macro-modes resulting in a single project network where the objective is the maximization of the net present value and the cash flows are positive. For setting the time horizon three different methods are developed and tested. A genetic algorithm approach is designed for this problem, which is also employed to generate a starting solution for the exact solution procedure. Using the starting times and the resource profiles obtained in stage one each project is scheduled at stage two for minimum makespan. The result of the first stage is subjected to a post-processing procedure to distribute the remaining resource capacities. Three new test problem sets are generated with 81, 84 and 27 problems each and three different configurations of solution procedures are tested

    Multi-mode resource constrained multi-project scheduling and resource portfolio problem

    Get PDF
    This paper introduces a multi-project problem environment which involves multiple projects with assigned due dates; with activities that have alternative resource usage modes; a resource dedication policy that does not allow sharing of resources among projects throughout the planning horizon; and a total budget. There are three issues to face when investigating this multiproject environment. First, the total budget should be distributed among different resource types to determine the general resource capacities which correspond to the total amount for each renewable resource to be dedicated to the projects. With the general resource capacities at hand, the next issue is to determine the amounts of resources to be dedicated to the individual projects. With the dedication of resources accomplished, the scheduling of the projects' activities reduces to the multi-mode resource constrained project scheduling problem (MRCPSP) for each individual project. Finally the last issue is the effcient solution of the resulting MRCPSPs. In this paper, this multi-project environment is modeled in an integrated fashion and designated as the Resource Portfolio Problem. A two-phase and a monolithic genetic algorithm are proposed as two solution approaches each of which employs a new improvement move designated as the combinatorial auction for resource portfolio and the combinatorial auction for resource dedication. Computational study using test problems demonstrated the effectiveness of the solution approach proposed
    corecore