17,905 research outputs found

    Complementary network-based approaches for exploring genetic structure and functional connectivity in two vulnerable, endemic ground squirrels

    Get PDF
    The persistence of small populations is influenced by genetic structure and functional connectivity. We used two network-based approaches to understand the persistence of the northern Idaho ground squirrel (Urocitellus brunneus) and the southern Idaho ground squirrel (U. endemicus), two congeners of conservation concern. These graph theoretic approaches are conventionally applied to social or transportation networks, but here are used to study population persistence and connectivity. Population graph analyses revealed that local extinction rapidly reduced connectivity for the southern species, while connectivity for the northern species could be maintained following local extinction. Results from gravity models complemented those of population graph analyses, and indicated that potential vegetation productivity and topography drove connectivity in the northern species. For the southern species, development (roads) and small-scale topography reduced connectivity, while greater potential vegetation productivity increased connectivity. Taken together, the results of the two network-based methods (population graph analyses and gravity models) suggest the need for increased conservation action for the southern species, and that management efforts have been effective at maintaining habitat quality throughout the current range of the northern species. To prevent further declines, we encourage the continuation of management efforts for the northern species, whereas conservation of the southern species requires active management and additional measures to curtail habitat fragmentation. Our combination of population graph analyses and gravity models can inform conservation strategies of other species exhibiting patchy distributions

    Regional surname affinity: a spatial network approach

    Get PDF
    OBJECTIVE We investigate surname affinities among areas of modern‐day China, by constructing a spatial network, and making community detection. It reports a geographical genealogy of the Chinese population that is result of population origins, historical migrations, and societal evolutions. MATERIALS AND METHODS We acquire data from the census records supplied by China's National Citizen Identity Information System, including the surname and regional information of 1.28 billion registered Chinese citizens. We propose a multilayer minimum spanning tree (MMST) to construct a spatial network based on the matrix of isonymic distances, which is often used to characterize the dissimilarity of surname structure among areas. We use the fast unfolding algorithm to detect network communities. RESULTS We obtain a 10‐layer MMST network of 362 prefecture nodes and 3,610 edges derived from the matrix of the Euclidean distances among these areas. These prefectures are divided into eight groups in the spatial network via community detection. We measure the partition by comparing the inter‐distances and intra‐distances of the communities and obtain meaningful regional ethnicity classification. DISCUSSION The visualization of the resulting communities on the map indicates that the prefectures in the same community are usually geographically adjacent. The formation of this partition is influenced by geographical factors, historic migrations, trade and economic factors, as well as isolation of culture and language. The MMST algorithm proves to be effective in geo‐genealogy and ethnicity classification for it retains essential information about surname affinity and highlights the geographical consanguinity of the population.National Natural Science Foundation of China, Grant/Award Numbers: 61773069, 71731002; National Social Science Foundation of China, Grant/Award Number: 14BSH024; Foundation of China of China Scholarships Council, Grant/Award Numbers: 201606045048, 201706040188, 201706040015; DOE, Grant/Award Number: DE-AC07-05Id14517; DTRA, Grant/Award Number: HDTRA1-14-1-0017; NSF, Grant/Award Numbers: CHE-1213217, CMMI-1125290, PHY-1505000 (61773069 - National Natural Science Foundation of China; 71731002 - National Natural Science Foundation of China; 14BSH024 - National Social Science Foundation of China; 201606045048 - Foundation of China of China Scholarships Council; 201706040188 - Foundation of China of China Scholarships Council; 201706040015 - Foundation of China of China Scholarships Council; DE-AC07-05Id14517 - DOE; HDTRA1-14-1-0017 - DTRA; CHE-1213217 - NSF; CMMI-1125290 - NSF; PHY-1505000 - NSF)Published versio

    Median evidential c-means algorithm and its application to community detection

    Get PDF
    Median clustering is of great value for partitioning relational data. In this paper, a new prototype-based clustering method, called Median Evidential C-Means (MECM), which is an extension of median c-means and median fuzzy c-means on the theoretical framework of belief functions is proposed. The median variant relaxes the restriction of a metric space embedding for the objects but constrains the prototypes to be in the original data set. Due to these properties, MECM could be applied to graph clustering problems. A community detection scheme for social networks based on MECM is investigated and the obtained credal partitions of graphs, which are more refined than crisp and fuzzy ones, enable us to have a better understanding of the graph structures. An initial prototype-selection scheme based on evidential semi-centrality is presented to avoid local premature convergence and an evidential modularity function is defined to choose the optimal number of communities. Finally, experiments in synthetic and real data sets illustrate the performance of MECM and show its difference to other methods
    • 

    corecore