4,587 research outputs found

    Flexible protein folding by ant colony optimization

    Get PDF
    Protein structure prediction is one of the most challenging topics in bioinformatics. As the protein structure is found to be closely related to its functions, predicting the folding structure of a protein to judge its functions is meaningful to the humanity. This chapter proposes a flexible ant colony (FAC) algorithm for solving protein folding problems (PFPs) based on the hydrophobic-polar (HP) square lattice model. Different from the previous ant algorithms for PFPs, the pheromones in the proposed algorithm are placed on the arcs connecting adjacent squares in the lattice. Such pheromone placement model is similar to the one used in the traveling salesmen problems (TSPs), where pheromones are released on the arcs connecting the cities. Moreover, the collaboration of effective heuristic and pheromone strategies greatly enhances the performance of the algorithm so that the algorithm can achieve good results without local search methods. By testing some benchmark two-dimensional hydrophobic-polar (2D-HP) protein sequences, the performance shows that the proposed algorithm is quite competitive compared with some other well-known methods for solving the same protein folding problems

    Protein folding in hydrophobic-polar lattice model: a flexible ant colony optimization approach

    Get PDF
    This paper proposes a flexible ant colony (FAC) algorithm for solving protein folding problems based on the hydrophobic-polar square lattice model. Collaborations of novel pheromone and heuristic strategies in the proposed algorithm make it more effective in predicting structures of proteins compared with other state-of-the-art algorithms

    A tractable genotype-phenotype map for the self-assembly of protein quaternary structure

    Full text link
    The mapping between biological genotypes and phenotypes is central to the study of biological evolution. Here we introduce a rich, intuitive, and biologically realistic genotype-phenotype (GP) map, that serves as a model of self-assembling biological structures, such as protein complexes, and remains computationally and analytically tractable. Our GP map arises naturally from the self-assembly of polyomino structures on a 2D lattice and exhibits a number of properties: redundancy\textit{redundancy} (genotypes vastly outnumber phenotypes), phenotype bias\textit{phenotype bias} (genotypic redundancy varies greatly between phenotypes), genotype component disconnectivity\textit{genotype component disconnectivity} (phenotypes consist of disconnected mutational networks) and shape space covering\textit{shape space covering} (most phenotypes can be reached in a small number of mutations). We also show that the mutational robustness of phenotypes scales very roughly logarithmically with phenotype redundancy and is positively correlated with phenotypic evolvability. Although our GP map describes the assembly of disconnected objects, it shares many properties with other popular GP maps for connected units, such as models for RNA secondary structure or the HP lattice model for protein tertiary structure. The remarkable fact that these important properties similarly emerge from such different models suggests the possibility that universal features underlie a much wider class of biologically realistic GP maps.Comment: 12 pages, 6 figure

    Soft Computing Techiniques for the Protein Folding Problem on High Performance Computing Architectures

    Get PDF
    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.This work is jointly supported by the FundaciĂłnSĂ©neca (Agencia Regional de Ciencia y TecnologĂ­a, RegiĂłn de Murcia) under grants 15290/PI/2010 and 18946/JLI/13, by the Spanish MEC and European Commission FEDER under grant with reference TEC2012-37945-C02-02 and TIN2012-31345, by the Nils Coordinated Mobility under grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF). We also thank NVIDIA for hardware donation within UCAM GPU educational and research centers.IngenierĂ­a, Industria y ConstrucciĂł
    • …
    corecore