1,152 research outputs found

    Climbing depth-bounded adjacent discrepancy search for solving hybrid flow shop scheduling problems with multiprocessor tasks

    Full text link
    This paper considers multiprocessor task scheduling in a multistage hybrid flow-shop environment. The problem even in its simplest form is NP-hard in the strong sense. The great deal of interest for this problem, besides its theoretical complexity, is animated by needs of various manufacturing and computing systems. We propose a new approach based on limited discrepancy search to solve the problem. Our method is tested with reference to a proposed lower bound as well as the best-known solutions in literature. Computational results show that the developed approach is efficient in particular for large-size problems

    Reinforcement learning based multi core scheduling (RLBMCS) for real time systems

    Get PDF
    Embedded systems with multi core processors are increasingly popular because of the diversity of applications that can be run on it. In this work, a reinforcement learning based scheduling method is proposed to handle the real time tasks in multi core systems with effective CPU usage and lower response time. The priority of the tasks is varied dynamically to ensure fairness with reinforcement learning based priority assignment and Multi Core MultiLevel Feedback queue (MCMLFQ) to manage the task execution in multi core system
    corecore