2,418 research outputs found

    Many-Objective Genetic Type-2 Fuzzy Logic Based Workforce Optimisation Strategies for Large Scale Organisational Design

    Get PDF
    Workforce optimisation aims to maximise the productivity of a workforce and is a crucial practice for large organisations. The more effective these workforce optimisation strategies are, the better placed the organisation is to meet their objectives. Usually, the focus of workforce optimisation is scheduling, routing and planning. These strategies are particularly relevant to organisations with large mobile workforces, such as utility companies. There has been much research focused on these areas. One aspect of workforce optimisation that gets overlooked is organisational design. Organisational design aims to maximise the potential utilisation of all resources while minimising costs. If done correctly, other systems (scheduling, routing and planning) will be more effective. This thesis looks at organisational design, from geographical structures and team structures to skilling and resource management. A many-objective optimisation system to tackle large-scale optimisation problems will be presented. The system will employ interval type-2 fuzzy logic to handle the uncertainties with the real-world data, such as travel times and task completion times. The proposed system was developed with data from British Telecom (BT) and was deployed within the organisation. The techniques presented at the end of this thesis led to a very significant improvement over the standard NSGA-II algorithm by 31.07% with a P-Value of 1.86-10. The system has delivered an increase in productivity in BT of 0.5%, saving an estimated £1million a year, cut fuel consumption by 2.9%, resulting in an additional saving of over £200k a year. Due to less fuel consumption Carbon Dioxide (CO2) emissions have been reduced by 2,500 metric tonnes. Furthermore, a report by the United Kingdom’s (UK’s) Department of Transport found that for every billion vehicle miles travelled, there were 15,409 serious injuries or deaths. The system saved an estimated 7.7 million miles, equating to preventing more than 115 serious casualties and fatalities

    The multiple team formation problem using sociometry

    Get PDF
    The Team Formation problem (TFP) has become a well-known problem in the OR literature over the last few years. In this problem, the allocation of multiple individuals that match a required set of skills as a group must be chosen to maximise one or several social positive attributes. Specifically, the aim of the current research is two-fold. First, two new dimensions of the TFP are added by considering multiple projects and fractions of people's dedication. This new problem is named the Multiple Team Formation Problem (MTFP). Second, an optimization model consisting in a quadratic objective function, linear constraints and integer variables is proposed for the problem. The optimization model is solved by three algorithms: a Constraint Programming approach provided by a commercial solver, a Local Search heuristic and a Variable Neighbourhood Search metaheuristic. These three algorithms constitute the first attempt to solve the MTFP, being a variable neighbourhood local search metaheuristic the most efficient in almost all cases. Applications of this problem commonly appear in real-life situations, particularly with the current and ongoing development of social network analysis. Therefore, this work opens multiple paths for future research

    Formalisation and use of competencies for industrial performance optimisation : a survey.

    Get PDF
    For many years, industrial performance has been implicitly considered as deriving from the optimisation of technological and material resources (machines, inventories,...), made possible by centralized organisations. The topical requirements for reactive and flexible industrial systems have progressively reintroduced the human workforce as the main source of industrial performance. Making this paradigm operational requires the identification and careful formalisation of the link between human resource and industrial performance, through concepts like skills, competencies or know-how. This paper provides a general survey of the formalisation and integration of competence-oriented concepts within enterprise information systems and decision systems, aiming at providing new methods and tools for performance management

    iPatch: A Many-Objective Type-2 Fuzzy Logic System for Field Workforce Optimisation

    Get PDF
    Employing effective optimisation strategies in organisations with large workforces can have a clear impact on costs, revenues, and customer satisfaction. This is particularly true for organisations that employ large field workforces, such as utility companies. Ensuring each member of the workforce is fully utilised is a challenging problem as there are many factors that can impact the organisation's overall performance. We have developed a system that optimises to make sure we have the right engineers, in the right place, at the right time, with the right skills. This system is currently deployed to help solve real-world optimisation problems, which means there are many objectives to consider when optimising, and there is much uncertainty in the environment. The latest version of the system uses a multi-objective genetic algorithm as its core optimisation logic, with modifications such as Fuzzy Dominance Rules (FDRs), to help overcome the issues associated with many-objective optimisation. The system also utilises genetically optimised type-2 fuzzy logic systems to better handle the uncertainty in the data and modelling. This paper shows the genetically optimised type-2 fuzzy logic systems producing better results than the crisp value implementations in our application. We also show that we can help address the weaknesses in the standard NSGA-II dominance calculations by using FDRs. The impact of this work can be measured in a number of ways; productivity benefit of £1million a year, the reduction of over 2,500 metric tonnes of CO2 and a possible prevention of over 100 serious injuries and fatalities on the UK's roads

    A holonic workforce allocation model for labour-intensive manufacturing

    Get PDF
    This paper presents a new model for workforce allocation in labour-intensive industries. In such industries where production processes mostly include manual assembly operations, performance is highly influenced by the availability of skilled workers. Sudden unavailability of skilled labour has significant adverse effects on production. Furthermore, as competition intensifies, production becomes more sensitive to changing market demands. Such disturbances can be attenuated by introducing flexibility in the production planning process. Workforce allocation plays a significant role in the planning process. Thus, this paper focuses on workforce allocation, and a support system is developed from the concepts of holonic manufacturing systems and PROSA reference architecture. The system was designed in unified modelling language and was tested using an object-oriented software developed in C++. The use of the holonic methodology to develop the system has helped to identify the shortfalls of the conventional method adopted in industry and develop algorithms to improve the workforce allocation process. The proposed system was simulated using production data from a computer manufacturer case study. The paper then presents a comparison of the factory’s conventional method of workforce allocation with the proposed holonic workforce allocation system. The results suggest an improved manufacturing throughput performance

    An Integrated Framework for Staffing and Shift Scheduling in Hospitals

    Get PDF
    Over the years, one of the main concerns confronting hospital management is optimising the staffing and scheduling decisions. Consequences of inappropriate staffing can adversely impact on hospital performance, patient experience and staff satisfaction alike. A comprehensive review of literature (more than 1300 journal articles) is presented in a new taxonomy of three dimensions; problem contextualisation, solution approach, evaluation perspective and uncertainty. Utilising Operations Research methods, solutions can provide a positive contribution in underpinning staffing and scheduling decisions. However, there are still opportunities to integrate decision levels; incorporate practitioners view in solution architectures; consider staff behaviour impact, and offer comprehensive applied frameworks. Practitioners’ perspectives have been collated using an extensive exploratory study in Irish hospitals. A preliminary questionnaire has indicated the need of effective staffing and scheduling decisions before semi-structured interviews have taken place with twenty-five managers (fourteen Directors and eleven head nurses) across eleven major acute Irish hospitals (about 50% of healthcare service deliverers). Thematic analysis has produced five key themes; demand for care, staffing and scheduling issues, organisational aspects, management concern, and technology-enabled. In addition to other factors that can contribute to the problem such as coordination, environment complexity, understaffing, variability and lack of decision support. A multi-method approach including data analytics, modelling and simulation, machine learning, and optimisation has been employed in order to deliver adequate staffing and shift scheduling framework. A comprehensive portfolio of critical factors regarding patients, staff and hospitals are included in the decision. The framework was piloted in the Emergency Department of one of the leading and busiest university hospitals in Dublin (Tallaght Hospital). Solutions resulted from the framework (i.e. new shifts, staff workload balance, increased demands) have showed significant improvement in all key performance measures (e.g. patient waiting time, staff utilisation). Management team of the hospital endorsed the solution framework and are currently discussing enablers to implement the recommendation

    Prise en compte de la flexibilité des ressources humaines dans la planification et l’ordonnancement des activités industrielles

    Get PDF
    Le besoin croissant de réactivité dans les différents secteurs industriels face à la volatilité des marchés soulève une forte demande de la flexibilité dans leur organisation. Cette flexibilité peut être utilisée pour améliorer la robustesse du planning de référence d’un programme d’activités donné. Les ressources humaines de l’entreprise étant de plus en plus considérées comme le coeur des structures organisationnelles, elles représentent une source de flexibilité renouvelable et viable. Tout d’abord, ce travail a été mis en oeuvre pour modéliser le problème d’affectation multi-périodes des effectifs sur les activités industrielles en considérant deux dimensions de la flexibilité: L’annualisation du temps de travail, qui concerne les politiques de modulation d’horaires, individuels ou collectifs, et la polyvalence des opérateurs, qui induit une vision dynamique de leurs compétences et la nécessité de prévoir les évolutions des performances individuelles en fonction des affectations successives. La nature dynamique de l’efficacité des effectifs a été modélisée en fonction de l’apprentissage par la pratique et de la perte de compétence pendant les périodes d’interruption du travail. En conséquence, nous sommes résolument placés dans un contexte où la durée prévue des activités n’est plus déterministe, mais résulte du nombre des acteurs choisis pour les exécuter, en plus des niveaux de leur expérience. Ensuite, la recherche a été orientée pour répondre à la question : « quelle genre, ou quelle taille, de problème pose le projet que nous devons planifier? ». Par conséquent, les différentes dimensions du problème posé sont classées et analysés pour être évaluées et mesurées. Pour chaque dimension, la méthode d’évaluation la plus pertinente a été proposée : le travail a ensuite consisté à réduire les paramètres résultants en composantes principales en procédant à une analyse factorielle. En résultat, la complexité (ou la simplicité) de la recherche de solution (c’est-à-dire de l’élaboration d’un planning satisfaisant pour un problème donné) peut être évaluée. Pour ce faire, nous avons développé une plate-forme logicielle destinée à résoudre le problème et construire le planning de référence du projet avec l’affectation des ressources associées, plate-forme basée sur les algorithmes génétiques. Le modèle a été validé, et ses paramètres ont été affinés via des plans d’expériences pour garantir la meilleure performance. De plus, la robustesse de ces performances a été étudiée sur la résolution complète d’un échantillon de quatre cents projets, classés selon le nombre de leurs tâches. En raison de l’aspect dynamique de l’efficacité des opérateurs, le présent travail examine un ensemble de facteurs qui influencent le développement de leur polyvalence. Les résultats concluent logiquement qu’une entreprise en quête de flexibilité doit accepter des coûts supplémentaires pour développer la polyvalence de ses opérateurs. Afin de maîtriser ces surcoûts, le nombre des opérateurs qui suivent un programme de développement des compétences doit être optimisé, ainsi que, pour chacun d’eux, le degré de ressemblance entre les nouvelles compétences développées et les compétences initiales, ou le nombre de ces compétences complémentaires (toujours pour chacun d’eux), ainsi enfin que la façon dont les heures de travail des opérateurs doivent être réparties sur la période d’acquisition des compétences. Enfin, ce travail ouvre la porte pour la prise en compte future des facteurs humains et de la flexibilité des effectifs pendant l’élaboration d’un planning de référence. ABSTRACT : The growing need of responsiveness for manufacturing companies facing the market volatility raises a strong demand for flexibility in their organization. This flexibility can be used to enhance the robustness of a baseline schedule for a given programme of activities. Since the company personnel are increasingly seen as the core of the organizational structures, they provide the decision-makers with a source of renewable and viable flexibility. First, this work was implemented to model the problem of multi-period workforce allocation on industrial activities with two degrees of flexibility: the annualizing of the working time, which offers opportunities of changing the schedules, individually as well as collectively. The second degree of flexibility is the versatility of operators, which induces a dynamic view of their skills and the need to predict changes in individual performances as a result of successive assignments. The dynamic nature of workforce’s experience was modelled in function of learning-by-doing and of oblivion phenomenon during the work interruption periods. We firmly set ourselves in a context where the expected durations of activities are no longer deterministic, but result from the number and levels of experience of the workers assigned to perform them. After that, the research was oriented to answer the question “What kind of problem is raises the project we are facing to schedule?”: therefore the different dimensions of the project are inventoried and analysed to be measured. For each of these dimensions, the related sensitive assessment methods have been proposed. Relying on the produced correlated measures, the research proposes to aggregate them through a factor analysis in order to produce the main principal components of an instance. Consequently, the complexity or the easiness of solving or realising a given scheduling problem can be evaluated. In that view, we developed a platform software to solve the problem and construct the project baseline schedule with the associated resources allocation. This platform relies on a genetic algorithm. The model has been validated, moreover, its parameters has been tuned to give the best performance, relying on an experimental design procedure. The robustness of its performance was also investigated, by a comprehensive solving of four hundred instances of projects, ranked according to the number of their tasks. Due to the dynamic aspect of the workforce’s experience, this research work investigates a set of different parameters affecting the development of their versatility. The results recommend that the firms seeking for flexibility should accept an amount of extra cost to develop the operators’ multi functionality. In order to control these over-costs, the number of operators who attend a skill development program should be optimised, as well as the similarity of the new developed skills relative to the principal ones, or the number of the additional skills an operator may be trained to, or finally the way the operators’ working hours should be distributed along the period of skill acquisition: this is the field of investigations of the present work which will, in the end, open the door for considering human factors and workforce’s flexibility in generating a work baseline program

    Considering the flexibility of human resources in planning and scheduling industrial activities

    Get PDF
    The growing need of responsiveness for manufacturing companies facing the market volatility raises a strong demand for flexibility in their organization. This flexibility can be used to enhance the robustness of a baseline schedule for a given programme of activities. Since the company personnel are increasingly seen as the core of the organizational structures, they provide the decision-makers with a source of renewable and viable flexibility. First, this work was implemented to model the problem of multi-period workforce allocation on industrial activities with two degrees of flexibility: the annualizing of the working time, which offers opportunities of changing the schedules, individually as well as collectively. The second degree of flexibility is the versatility of operators, which induces a dynamic view of their skills and the need to predict changes in individual performances as a result of successive assignments. The dynamic nature of workforce’s experience was modelled in function of learning-by-doing and of oblivion phenomenon during the work interruption periods. We firmly set ourselves in a context where the expected durations of activities are no longer deterministic, but result from the number and levels of experience of the workers assigned to perform them. After that, the research was oriented to answer the question “What kind of problem is raises the project we are facing to schedule?”: therefore the different dimensions of the project are inventoried and analysed to be measured. For each of these dimensions, the related sensitive assessment methods have been proposed. Relying on the produced correlated measures, the research proposes to aggregate them through a factor analysis in order to produce the main principal components of an instance. Consequently, the complexity or the easiness of solving or realising a given scheduling problem can be evaluated. In that view, we developed a platform software to solve the problem and construct the project baseline schedule with the associated resources allocation. This platform relies on a genetic algorithm. The model has been validated, moreover, its parameters has been tuned to give the best performance, relying on an experimental design procedure. The robustness of its performance was also investigated, by a comprehensive solving of four hundred instances of projects, ranked according to the number of their tasks. Due to the dynamic aspect of the workforce’s experience, this research work investigates a set of different parameters affecting the development of their versatility. The results recommend that the firms seeking for flexibility should accept an amount of extra cost to develop the operators’ multi functionality. In order to control these over-costs, the number of operators who attend a skill development program should be optimised, as well as the similarity of the new developed skills relative to the principal ones, or the number of the additional skills an operator may be trained to, or finally the way the operators’ working hours should be distributed along the period of skill acquisition: this is the field of investigations of the present work which will, in the end, open the door for considering human factors and workforce’s flexibility in generating a work baseline program

    Holistic, data-driven, service and supply chain optimisation: linked optimisation.

    Get PDF
    The intensity of competition and technological advancements in the business environment has made companies collaborate and cooperate together as a means of survival. This creates a chain of companies and business components with unified business objectives. However, managing the decision-making process (like scheduling, ordering, delivering and allocating) at the various business components and maintaining a holistic objective is a huge business challenge, as these operations are complex and dynamic. This is because the overall chain of business processes is widely distributed across all the supply chain participants; therefore, no individual collaborator has a complete overview of the processes. Increasingly, such decisions are automated and are strongly supported by optimisation algorithms - manufacturing optimisation, B2B ordering, financial trading, transportation scheduling and allocation. However, most of these algorithms do not incorporate the complexity associated with interacting decision-making systems like supply chains. It is well-known that decisions made at one point in supply chains can have significant consequences that ripple through linked production and transportation systems. Recently, global shocks to supply chains (COVID-19, climate change, blockage of the Suez Canal) have demonstrated the importance of these interdependencies, and the need to create supply chains that are more resilient and have significantly reduced impact on the environment. Such interacting decision-making systems need to be considered through an optimisation process. However, the interactions between such decision-making systems are not modelled. We therefore believe that modelling such interactions is an opportunity to provide computational extensions to current optimisation paradigms. This research study aims to develop a general framework for formulating and solving holistic, data-driven optimisation problems in service and supply chains. This research achieved this aim and contributes to scholarship by firstly considering the complexities of supply chain problems from a linked problem perspective. This leads to developing a formalism for characterising linked optimisation problems as a model for supply chains. Secondly, the research adopts a method for creating a linked optimisation problem benchmark by linking existing classical benchmark sets. This involves using a mix of classical optimisation problems, typically relating to supply chain decision problems, to describe different modes of linkages in linked optimisation problems. Thirdly, several techniques for linking supply chain fragmented data have been proposed in the literature to identify data relationships. Therefore, this thesis explores some of these techniques and combines them in specific ways to improve the data discovery process. Lastly, many state-of-the-art algorithms have been explored in the literature and these algorithms have been used to tackle problems relating to supply chain problems. This research therefore investigates the resilient state-of-the-art optimisation algorithms presented in the literature, and then designs suitable algorithmic approaches inspired by the existing algorithms and the nature of problem linkages to address different problem linkages in supply chains. Considering research findings and future perspectives, the study demonstrates the suitability of algorithms to different linked structures involving two sub-problems, which suggests further investigations on issues like the suitability of algorithms on more complex structures, benchmark methodologies, holistic goals and evaluation, processmining, game theory and dependency analysis
    • …
    corecore