120,277 research outputs found

    A Hybrid Water Distribution Networks Design Optimization Method Based on a Search Space Reduction Approach and a Genetic Algorithm

    Get PDF
    This work presents a new approach to increase the efficiency of the heuristics methods applied to the optimal design of water distribution systems. The approach is based on reducing the search space by bounding the diameters that can be used for every network pipe. To reduce the search space, two opposite extreme flow distribution scenarios are analyzed and velocity restrictions to the pipe flow are then applied. The first scenario produces the most uniform flow distribution in the network. The opposite scenario is represented by the network with the maximum flow accumulation. Both extreme flow distributions are calculated by solving a quadratic programming problem, which is a very robust and efficient procedure. This approach has been coupled to a Genetic Algorithm (GA). The GA has an integer coding scheme and variable number of alleles depending on the number of diameters comprised within the velocity restrictions. The methodology has been applied to several benchmark networks and its performance has been compared to a classic GA formulation with a non-bounded search space. It considerably reduced the search space and provided a much faster and more accurate convergence than the GA formulation. This approach can also be coupled to other metaheuristics

    Airfoil shape optimization using improved simple genetic algorithm (ISGA)

    Get PDF
    Paper presented at the 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 1-4 July, 2007.To study the efficiency of genetic algorithms (GAs) in the optimization of aerodynamic shapes, the shape of an airfoil was optimized by a genetic algorithm to obtain maximum lift to drag ratio and maximum lift. The flow field is assumed to be two dimensional, Invicsid, transonic and is analyzed numerically. The camber line and thickness distribution of the airfoil were modeled by a fourth order polynomial. The airfoil chord length was assumed constant. Also, proper boundary conditions were applied. A finite volume method using the first order Roe’s flux approximation and time marching (explicit) method was used for the flow analysis. The simple genetic algorithm (SGA) was used for optimization. This algorithm could find the optimum point of this problem in an acceptable time frame. Results show that the GA could find the optimum point by examining only less than 0.1% of the total possible cases. Meanwhile, effects of parameters of GA such as population size in each generation, mutation probability and crossover probability on accuracy and speed of convergence of this SGA were studied. These parameters have very small effects on the accuracy of the genetic algorithm, but they have a sensible effect on speed of convergence. The parameters of this genetic algorithm were improved to obtain the minimum run time of optimization procedure and to maximize the speed of convergence of this genetic algorithm. Robustness and efficiency of this algorithm in optimizing the shape of the airfoils were shown. Also, by finding the optimum values of its parameters, maximum speed and minimum run time was obtained. It is shown that for engineering purposes, the speed of GAs is incredibly high, and acceptable results are sought by a fairly low number of generations of computations.cs201

    An Evolutionary Computational Approach for Designing Micro Hydro Power Plants

    Get PDF
    Micro Hydro Power Plants (MHPP) constitute an effective, environmentally-friendly solution to deal with energy poverty in rural isolated areas, being the most extended renewable technology in this field. Nevertheless, the context of poverty and lack of qualified manpower usually lead to a poor usage of the resources, due to the use of thumb rules and user experience to design the layout of the plants, which conditions the performance. For this reason, the development of robust and efficient optimization strategies are particularly relevant in this field. This paper proposes a Genetic Algorithm (GA) to address the problem of finding the optimal layout for an MHPP based on real scenario data, obtained by means of a set of experimental topographic measurements. With this end in view, a model of the plant is first developed, in terms of which the optimization problem is formulated with the constraints of minimal generated power and maximum use of flow, together with the practical feasibility of the layout to the measured terrain. The problem is formulated in both single-objective (minimization of the cost) and multi-objective (minimization of the cost and maximization of the generated power) modes, the Pareto dominance being studied in this last case. The algorithm is first applied to an example scenario to illustrate its performance and compared with a reference Branch and Bound Algorithm (BBA) linear approach, reaching reductions of more than 70% in the cost of the MHPP. Finally, it is also applied to a real set of geographical data to validate its robustness against irregular, poorly sampled domains.Agencia Española de Cooperación Internacional para el Desarrollo 2014 / ACDE / 00601

    Competent genetic-evolutionary optimization of water distribution systems

    Get PDF
    A genetic algorithm has been applied to the optimal design and rehabilitation of a water distribution system. Many of the previous applications have been limited to small water distribution systems, where the computer time used for solving the problem has been relatively small. In order to apply genetic and evolutionary optimization technique to a large-scale water distribution system, this paper employs one of competent genetic-evolutionary algorithms - a messy genetic algorithm to enhance the efficiency of an optimization procedure. A maximum flexibility is ensured by the formulation of a string and solution representation scheme, a fitness definition, and the integration of a well-developed hydraulic network solver that facilitate the application of a genetic algorithm to the optimization of a water distribution system. Two benchmark problems of water pipeline design and a real water distribution system are presented to demonstrate the application of the improved technique. The results obtained show that the number of the design trials required by the messy genetic algorithm is consistently fewer than the other genetic algorithms

    Stochastic axial compressor variable geometry schedule optimisation

    Get PDF
    The design of axial compressors is dictated by the maximisation of flow efficiency at on design conditions whereas at part speed the requirement for operation stability prevails. Among other stability aids, compressor variable geometry is employed to rise the surge line for the provision of an adequate surge margin. The schedule of the variable vanes is in turn typically obtained from expensive and time consuming rig tests that go through a vast combination of possible settings. The present paper explores the suitability of stochastic approaches to derive the most flow efficient schedule of an axial compressor for a minimum variable user defined value of the surge margin. A genetic algorithm has been purposely developed and its satisfactory performance validated against four representative benchmark functions. The work carries on with the necessary thorough investigation of the impact of the different genetic operators employed on the ability of the algorithm to find the global extremities in an effective and efficient manner. This deems fundamental to guarantee that the algorithm is not trapped in local extremities. The algorithm is then coupled with a compressor performance prediction tool that evaluates each individual's performance through a user defined fitness function. The most flow efficient schedule that conforms to a prescribed surge margin can be obtained thereby fast and inexpensively. Results are produced for a modern eight stage high bypass ratio compressor and compared with experimental data available to the research. The study concludes with the analysis of the existent relationship between surge margin and flow efficiency for the particular compressor under scrutiny. The study concludes with the analysis of the existent relationship between surge margin and flow efficiency for the particular compressor under scrutiny

    A Survey on Software Testing Techniques using Genetic Algorithm

    Full text link
    The overall aim of the software industry is to ensure delivery of high quality software to the end user. To ensure high quality software, it is required to test software. Testing ensures that software meets user specifications and requirements. However, the field of software testing has a number of underlying issues like effective generation of test cases, prioritisation of test cases etc which need to be tackled. These issues demand on effort, time and cost of the testing. Different techniques and methodologies have been proposed for taking care of these issues. Use of evolutionary algorithms for automatic test generation has been an area of interest for many researchers. Genetic Algorithm (GA) is one such form of evolutionary algorithms. In this research paper, we present a survey of GA approach for addressing the various issues encountered during software testing.Comment: 13 Page

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    corecore