2,551 research outputs found

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Exploring Task Mappings on Heterogeneous MPSoCs using a Bias-Elitist Genetic Algorithm

    Get PDF
    Exploration of task mappings plays a crucial role in achieving high performance in heterogeneous multi-processor system-on-chip (MPSoC) platforms. The problem of optimally mapping a set of tasks onto a set of given heterogeneous processors for maximal throughput has been known, in general, to be NP-complete. The problem is further exacerbated when multiple applications (i.e., bigger task sets) and the communication between tasks are also considered. Previous research has shown that Genetic Algorithms (GA) typically are a good choice to solve this problem when the solution space is relatively small. However, when the size of the problem space increases, classic genetic algorithms still suffer from the problem of long evolution times. To address this problem, this paper proposes a novel bias-elitist genetic algorithm that is guided by domain-specific heuristics to speed up the evolution process. Experimental results reveal that our proposed algorithm is able to handle large scale task mapping problems and produces high-quality mapping solutions in only a short time period.Comment: 9 pages, 11 figures, uses algorithm2e.st

    YARTISS: A Tool to Visualize, Test, Compare and Evaluate Real-Time Scheduling Algorithms

    Get PDF
    International audienceIn this paper, we present a free software written in Java, YARTISS, which is a real-time multiprocessor scheduling simulator. It is aimed at comparing user-customized algorithms with ones from the literature on real-time scheduling. This simulator is designed as an easy-to-use modular tool in which new modules can be added without the need to decompress, edit nor recompile existing parts. It can simulate the execution of a large number of concurrent periodic independent task sets on multiprocessor systems and generate clear visual results of the scheduling process (both schedules and tunable metrics presentations). Other task models are already implemented in the simulator, like graph tasks with precedence constraints and it is easily extensible to other task models. Moreover, YARTISS can simulate task sets in which energy consumption is a scheduling parameter in the same manner as Worst Case Execution Time (WCET)
    • …
    corecore