5,132 research outputs found

    Chemoinformatics Research at the University of Sheffield: A History and Citation Analysis

    Get PDF
    This paper reviews the work of the Chemoinformatics Research Group in the Department of Information Studies at the University of Sheffield, focusing particularly on the work carried out in the period 1985-2002. Four major research areas are discussed, these involving the development of methods for: substructure searching in databases of three-dimensional structures, including both rigid and flexible molecules; the representation and searching of the Markush structures that occur in chemical patents; similarity searching in databases of both two-dimensional and three-dimensional structures; and compound selection and the design of combinatorial libraries. An analysis of citations to 321 publications from the Group shows that it attracted a total of 3725 residual citations during the period 1980-2002. These citations appeared in 411 different journals, and involved 910 different citing organizations from 54 different countries, thus demonstrating the widespread impact of the Group's work

    Generic Strategies for Chemical Space Exploration

    Full text link
    Computational approaches to exploring "chemical universes", i.e., very large sets, potentially infinite sets of compounds that can be constructed by a prescribed collection of reaction mechanisms, in practice suffer from a combinatorial explosion. It quickly becomes impossible to test, for all pairs of compounds in a rapidly growing network, whether they can react with each other. More sophisticated and efficient strategies are therefore required to construct very large chemical reaction networks. Undirected labeled graphs and graph rewriting are natural models of chemical compounds and chemical reactions. Borrowing the idea of partial evaluation from functional programming, we introduce partial applications of rewrite rules. Binding substrate to rules increases the number of rules but drastically prunes the substrate sets to which it might match, resulting in dramatically reduced resource requirements. At the same time, exploration strategies can be guided, e.g. based on restrictions on the product molecules to avoid the explicit enumeration of very unlikely compounds. To this end we introduce here a generic framework for the specification of exploration strategies in graph-rewriting systems. Using key examples of complex chemical networks from sugar chemistry and the realm of metabolic networks we demonstrate the feasibility of a high-level strategy framework. The ideas presented here can not only be used for a strategy-based chemical space exploration that has close correspondence of experimental results, but are much more general. In particular, the framework can be used to emulate higher-level transformation models such as illustrated in a small puzzle game

    Shared Memory Parallel Subgraph Enumeration

    Full text link
    The subgraph enumeration problem asks us to find all subgraphs of a target graph that are isomorphic to a given pattern graph. Determining whether even one such isomorphic subgraph exists is NP-complete---and therefore finding all such subgraphs (if they exist) is a time-consuming task. Subgraph enumeration has applications in many fields, including biochemistry and social networks, and interestingly the fastest algorithms for solving the problem for biochemical inputs are sequential. Since they depend on depth-first tree traversal, an efficient parallelization is far from trivial. Nevertheless, since important applications produce data sets with increasing difficulty, parallelism seems beneficial. We thus present here a shared-memory parallelization of the state-of-the-art subgraph enumeration algorithms RI and RI-DS (a variant of RI for dense graphs) by Bonnici et al. [BMC Bioinformatics, 2013]. Our strategy uses work stealing and our implementation demonstrates a significant speedup on real-world biochemical data---despite a highly irregular data access pattern. We also improve RI-DS by pruning the search space better; this further improves the empirical running times compared to the already highly tuned RI-DS.Comment: 18 pages, 12 figures, To appear at the 7th IEEE Workshop on Parallel / Distributed Computing and Optimization (PDCO 2017

    A Generic Framework for Engineering Graph Canonization Algorithms

    Full text link
    The state-of-the-art tools for practical graph canonization are all based on the individualization-refinement paradigm, and their difference is primarily in the choice of heuristics they include and in the actual tool implementation. It is thus not possible to make a direct comparison of how individual algorithmic ideas affect the performance on different graph classes. We present an algorithmic software framework that facilitates implementation of heuristics as independent extensions to a common core algorithm. It therefore becomes easy to perform a detailed comparison of the performance and behaviour of different algorithmic ideas. Implementations are provided of a range of algorithms for tree traversal, target cell selection, and node invariant, including choices from the literature and new variations. The framework readily supports extraction and visualization of detailed data from separate algorithm executions for subsequent analysis and development of new heuristics. Using collections of different graph classes we investigate the effect of varying the selections of heuristics, often revealing exactly which individual algorithmic choice is responsible for particularly good or bad performance. On several benchmark collections, including a newly proposed class of difficult instances, we additionally find that our implementation performs better than the current state-of-the-art tools

    The Vadalog System: Datalog-based Reasoning for Knowledge Graphs

    Full text link
    Over the past years, there has been a resurgence of Datalog-based systems in the database community as well as in industry. In this context, it has been recognized that to handle the complex knowl\-edge-based scenarios encountered today, such as reasoning over large knowledge graphs, Datalog has to be extended with features such as existential quantification. Yet, Datalog-based reasoning in the presence of existential quantification is in general undecidable. Many efforts have been made to define decidable fragments. Warded Datalog+/- is a very promising one, as it captures PTIME complexity while allowing ontological reasoning. Yet so far, no implementation of Warded Datalog+/- was available. In this paper we present the Vadalog system, a Datalog-based system for performing complex logic reasoning tasks, such as those required in advanced knowledge graphs. The Vadalog system is Oxford's contribution to the VADA research programme, a joint effort of the universities of Oxford, Manchester and Edinburgh and around 20 industrial partners. As the main contribution of this paper, we illustrate the first implementation of Warded Datalog+/-, a high-performance Datalog+/- system utilizing an aggressive termination control strategy. We also provide a comprehensive experimental evaluation.Comment: Extended version of VLDB paper <https://doi.org/10.14778/3213880.3213888
    • …
    corecore