26,671 research outputs found

    Technology needs assessment of an atmospheric observation system for tropospheric research missions, part 1

    Get PDF
    The technology advancements needed to implement the atmospheric observation satellite systems for air quality research were identified. Tropospheric measurements are considered. The measurements and sensors are based on a model of knowledge objectives in atmospheric science. A set of potential missions and attendant spacecraft and sensors is postulated. The results show that the predominant technology needs will be in passive and active sensors for accurate and frequent global measurements of trace gas concentration profiles

    Additive Manufacturing: Multi Material Processing and Part Quality Control

    Get PDF

    Multistage adaptive noise cancellation and multi-dimensional signal processing for ultrasonic nondestructive evaluation

    Get PDF
    Ultrasonic signal processing presents several challenges with respect to both noise removal and interpretation. The interference of unwanted reflections from material grain structure can render the data extremely noisy and mask the detection of small flaws. It is therefore imperative to separate the flaw reflections from grain noise. The interpretation or classification of ultrasonic signals in general is relatively difficult due to the complexity of the physical process and similarity of signals from various classes of reflectors;Adaptive noise cancellation techniques are ideally suited for reducing spatially varying noise due to the grain structure of material in ultrasonic nondestructive evaluation. In this research, a multi-stage adaptive noise cancellation (MANC) scheme is proposed for reducing spatially varying grain noise and enhancing flaw detection in ultrasonic signals. The overall scheme is based on the use of an adaptive least mean square error (LMSE) filter with primary and reference signals derived from two adjacent positions of the transducers. Since grain noise is generally uncorrelated, in contrast to the correlated flaw echoes, adaptive filtering algorithms exploit the correlation properties of signals in a C-scan image to enhance the signal-to-noise ratio (SNR) of the output signal;A neural network-based signal classification system is proposed for the interpretation of ultrasonic signals obtained from inspection of welds, where signals have to be classified as resulting from porosity, slag, lack of fusion, or cracks in the weld region. Standard techniques rely on differences in individual A-scans to classify the signals. This thesis investigates the need for investigating signal features that incorporate the effects of beam spread and echo dynamics. Such effects call for data interpretation schemes that include a neighborhood of A-scans carrying information about a reflector. Several ultrasonic signal features based on the information in a two-dimensional array of ultrasonic waveforms, ranging from the estimation of statistical characteristics of signals to two and three-dimensional transform-based methods, are evaluated. A two-dimensional scan of ultrasonic testing is also represented in the form of images (B- and B\u27-scans). Multidimensional signal and image-processing algorithms are used to analyze the images. Two and three-dimensional Fourier transforms are applied to ultrasonic data that are inherently three-dimensional in nature (2 spatial and 1 time). A variety of transform-based features are then utilized for obtaining the final classification

    Autonomic State Management for Optimistic Simulation Platforms

    Get PDF
    We present the design and implementation of an autonomic state manager (ASM) tailored for integration within optimistic parallel discrete event simulation (PDES) environments based on the C programming language and the executable and linkable format (ELF), and developed for execution on x8664 architectures. With ASM, the state of any logical process (LP), namely the individual (concurrent) simulation unit being part of the simulation model, is allowed to be scattered on dynamically allocated memory chunks managed via standard API (e.g., malloc/free). Also, the application programmer is not required to provide any serialization/deserialization module in order to take a checkpoint of the LP state, or to restore it in case a causality error occurs during the optimistic run, or to provide indications on which portions of the state are updated by event processing, so to allow incremental checkpointing. All these tasks are handled by ASM in a fully transparent manner via (A) runtime identification (with chunk-level granularity) of the memory map associated with the LP state, and (B) runtime tracking of the memory updates occurring within chunks belonging to the dynamic memory map. The co-existence of the incremental and non-incremental log/restore modes is achieved via dual versions of the same application code, transparently generated by ASM via compile/link time facilities. Also, the dynamic selection of the best suited log/restore mode is actuated by ASM on the basis of an innovative modeling/optimization approach which takes into account stability of each operating mode with respect to variations of the model/environmental execution parameters
    • …
    corecore