23,820 research outputs found

    A generic framework for the analysis and specialization of logic programs

    Get PDF
    The relationship between abstract interpretation and partial deduction has received considerable attention and (partial) integrations have been proposed starting from both the partial deduction and abstract interpretation perspectives. In this work we present what we argüe is the first fully described generic algorithm for efñcient and precise integration of abstract interpretation and partial deduction. Taking as starting point state-of-the-art algorithms for context-sensitive, polyvariant abstract interpretation and (abstract) partial deduction, we present an algorithm which combines the best of both worlds. Key ingredients include the accurate success propagation inherent to abstract interpretation and the powerful program transformations achievable by partial deduction. In our algorithm, the calis which appear in the analysis graph are not analyzed w.r.t. the original definition of the procedure but w.r.t. specialized definitions of these procedures. Such specialized definitions are obtained by applying both unfolding and abstract executability. Our framework is parametric w.r.t. different control strategies and abstract domains. Different combinations of such parameters correspond to existing algorithms for program analysis and specialization. Simultaneously, our approach opens the door to the efñcient computation of strictly more precise results than those achievable by each of the individual techniques. The algorithm is now one of the key components of the CiaoPP analysis and specialization system

    An integration of partial evaluation in a generic abstract interpretation framework

    Get PDF
    Information generated by abstract interpreters has long been used to perform program specialization. Additionally, if the abstract interpreter generates a multivariant analysis, it is also possible to perform múltiple specialization. Information about valúes of variables is propagated by simulating program execution and performing fixpoint computations for recursive calis. In contrast, traditional partial evaluators (mainly) use unfolding for both propagating valúes of variables and transforming the program. It is known that abstract interpretation is a better technique for propagating success valúes than unfolding. However, the program transformations induced by unfolding may lead to important optimizations which are not directly achievable in the existing frameworks for múltiple specialization based on abstract interpretation. The aim of this work is to devise a specialization framework which integrates the better information propagation of abstract interpretation with the powerful program transformations performed by partial evaluation, and which can be implemented via small modifications to existing generic abstract interpreters. With this aim, we will relate top-down abstract interpretation with traditional concepts in partial evaluation and sketch how the sophisticated techniques developed for controlling partial evaluation can be adapted to the proposed specialization framework. We conclude that there can be both practical and conceptual advantages in the proposed integration of partial evaluation and abstract interpretation

    Program development using abstract interpretation (and the ciao system preprocessor)

    Get PDF
    The technique of Abstract Interpretation has allowed the development of very sophisticated global program analyses which are at the same time provably correct and practical. We present in a tutorial fashion a novel program development framework which uses abstract interpretation as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the program. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system librarles), to genérate and simplify run-time tests, and to perform high-level program transformations such as múltiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of validation and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, non-failure, and bounds on resource consumption (time or space cost). CiaoPP, the preprocessor of the Ciao multi-paradigm programming system, which implements the described functionality, will be used to illustrate the fundamental ideas

    A generic framework for context-sensitive analysis of modular programs

    Get PDF
    Context-sensitive analysis provides information which is potentially more accurate than that provided by context-free analysis. Such information can then be applied in order to validate/debug the program and/or to specialize the program obtaining important improvements. Unfortunately, context-sensitive analysis of modular programs poses important theoretical and practical problems. One solution, used in several proposals, is to resort to context-free analysis. Other proposals do address context-sensitive analysis, but are only applicable when the description domain used satisfies rather restrictive properties. In this paper, we argüe that a general framework for context-sensitive analysis of modular programs, Le., one that allows using all the domains which have proved useful in practice in the non-modular setting, is indeed feasible and very useful. Driven by our experience in the design and implementation of analysis and specialization techniques in the context of CiaoPP, the Ciao system preprocessor, in this paper we discuss a number of design goals for context-sensitive analysis of modular programs as well as the problems which arise in trying to meet these goals. We also provide a high-level description of a framework for analysis of modular programs which does substantially meet these objectives. This framework is generic in that it can be instantiated in different ways in order to adapt to different contexts. Finally, the behavior of the different instantiations w.r.t. the design goals that motivate our work is also discussed

    The CIAO Multi-Dialect Compiler and System: An Experimentation Workbench for Future (C)LP Systems

    Full text link
    CIAO is an advanced programming environment supporting Logic and Constraint programming. It offers a simple concurrent kernel on top of which declarative and non-declarative extensions are added via librarles. Librarles are available for supporting the ISOProlog standard, several constraint domains, functional and higher order programming, concurrent and distributed programming, internet programming, and others. The source language allows declaring properties of predicates via assertions, including types and modes. Such properties are checked at compile-time or at run-time. The compiler and system architecture are designed to natively support modular global analysis, with the two objectives of proving properties in assertions and performing program optimizations, including transparently exploiting parallelism in programs. The purpose of this paper is to report on recent progress made in the context of the CIAO system, with special emphasis on the capabilities of the compiler, the techniques used for supporting such capabilities, and the results in the áreas of program analysis and transformation already obtained with the system

    Verification of Java Bytecode using Analysis and Transformation of Logic Programs

    Full text link
    State of the art analyzers in the Logic Programming (LP) paradigm are nowadays mature and sophisticated. They allow inferring a wide variety of global properties including termination, bounds on resource consumption, etc. The aim of this work is to automatically transfer the power of such analysis tools for LP to the analysis and verification of Java bytecode (JVML). In order to achieve our goal, we rely on well-known techniques for meta-programming and program specialization. More precisely, we propose to partially evaluate a JVML interpreter implemented in LP together with (an LP representation of) a JVML program and then analyze the residual program. Interestingly, at least for the examples we have studied, our approach produces very simple LP representations of the original JVML programs. This can be seen as a decompilation from JVML to high-level LP source. By reasoning about such residual programs, we can automatically prove in the CiaoPP system some non-trivial properties of JVML programs such as termination, run-time error freeness and infer bounds on its resource consumption. We are not aware of any other system which is able to verify such advanced properties of Java bytecode
    corecore