95,979 research outputs found

    Model-driven Enterprise Systems Configuration

    Get PDF
    Enterprise Systems potentially lead to significant efficiency gains but require a well-conducted configuration process. A promising idea to manage and simplify the configuration process is based on the premise of using reference models for this task. Our paper continues along this idea and delivers a two-fold contribution: first, we present a generic process for the task of model-driven Enterprise Systems configuration including the steps of (a) Specification of configurable reference models, (b) Configuration of configurable reference models, (c) Transformation of configured reference models to regular build time models, (d) Deployment of the generated build time models, (e) Controlling of implementation models to provide input to the configuration, and (f) Consolidation of implementation models to provide input to reference model specification. We discuss inputs and outputs as well as the involvement of different roles and validation mechanisms. Second, we present an instantiation case of this generic process for Enterprise Systems configuration based on Configurable EPCs

    Towards a flexible service integration through separation of business rules

    Get PDF
    Driven by dynamic market demands, enterprises are continuously exploring collaborations with others to add value to their services and seize new market opportunities. Achieving enterprise collaboration is facilitated by Enterprise Application Integration and Business-to-Business approaches that employ architectural paradigms like Service Oriented Architecture and incorporate technological advancements in networking and computing. However, flexibility remains a major challenge related to enterprise collaboration. How can changes in demands and opportunities be reflected in collaboration solutions with minimum time and effort and with maximum reuse of existing applications? This paper proposes an approach towards a more flexible integration of enterprise applications in the context of service mediation. We achieve this by combining goal-based, model-driven and serviceoriented approaches. In particular, we pay special attention to the separation of business rules from the business process of the integration solution. Specifying the requirements as goal models, we separate those parts which are more likely to evolve over time in terms of business rules. These business rules are then made executable by exposing them as Web services and incorporating them into the design of the business process.\ud Thus, should the business rules change, the business process remains unaffected. Finally, this paper also provides an evaluation of the flexibility of our solution in relation to the current work in business process flexibility research

    Tasks, cognitive agents, and KB-DSS in workflow and process management

    Get PDF
    The purpose of this paper is to propose a nonparametric interest rate term structure model and investigate its implications on term structure dynamics and prices of interest rate derivative securities. The nonparametric spot interest rate process is estimated from the observed short-term interest rates following a robust estimation procedure and the market price of interest rate risk is estimated as implied from the historical term structure data. That is, instead of imposing a priori restrictions on the model, data are allowed to speak for themselves, and at the same time the model retains a parsimonious structure and the computational tractability. The model is implemented using historical Canadian interest rate term structure data. The parametric models with closed form solutions for bond and bond option prices, namely the Vasicek (1977) and CIR (1985) models, are also estimated for comparison purpose. The empirical results not only provide strong evidence that the traditional spot interest rate models and market prices of interest rate risk are severely misspecified but also suggest that different model specifications have significant impact on term structure dynamics and prices of interest rate derivative securities.

    Component Composition in Business and System Modelling

    Get PDF
    Bespoke development of large business systems can be couched in terms of the composition of components, which are, put simply, chunks of development work. Design, mapping a specification to an implementation, can also be expressed in terms of components: a refinement comprising an abstract component, a concrete component and a mapping between them. Similarly, system extension is the composition of an existing component, the legacy system, with a new component, the extension. This paper overviews work being done on a UK EPSRC funded research project formulating and formalizing techniques for describing, composing and performing integrity checks on components. Although the paper focuses on the specification and development of information systems, the techniques are equally applicable to the modeling and re-engineering of businesses, where no computer system may be involved

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Ontology-based collaborative framework for disaster recovery scenarios

    Full text link
    This paper aims at designing of adaptive framework for supporting collaborative work of different actors in public safety and disaster recovery missions. In such scenarios, firemen and robots interact to each other to reach a common goal; firemen team is equipped with smart devices and robots team is supplied with communication technologies, and should carry on specific tasks. Here, reliable connection is mandatory to ensure the interaction between actors. But wireless access network and communication resources are vulnerable in the event of a sudden unexpected change in the environment. Also, the continuous change in the mission requirements such as inclusion/exclusion of new actor, changing the actor's priority and the limitations of smart devices need to be monitored. To perform dynamically in such case, the presented framework is based on a generic multi-level modeling approach that ensures adaptation handled by semantic modeling. Automated self-configuration is driven by rule-based reconfiguration policies through ontology

    Identifying and addressing adaptability and information system requirements for tactical management

    Get PDF

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling
    • …
    corecore