9,318 research outputs found

    Putting the Semantics into Semantic Versioning

    Full text link
    The long-standing aspiration for software reuse has made astonishing strides in the past few years. Many modern software development ecosystems now come with rich sets of publicly-available components contributed by the community. Downstream developers can leverage these upstream components, boosting their productivity. However, components evolve at their own pace. This imposes obligations on and yields benefits for downstream developers, especially since changes can be breaking, requiring additional downstream work to adapt to. Upgrading too late leaves downstream vulnerable to security issues and missing out on useful improvements; upgrading too early results in excess work. Semantic versioning has been proposed as an elegant mechanism to communicate levels of compatibility, enabling downstream developers to automate dependency upgrades. While it is questionable whether a version number can adequately characterize version compatibility in general, we argue that developers would greatly benefit from tools such as semantic version calculators to help them upgrade safely. The time is now for the research community to develop such tools: large component ecosystems exist and are accessible, component interactions have become observable through automated builds, and recent advances in program analysis make the development of relevant tools feasible. In particular, contracts (both traditional and lightweight) are a promising input to semantic versioning calculators, which can suggest whether an upgrade is likely to be safe.Comment: to be published as Onward! Essays 202

    Specifying Reusable Components

    Full text link
    Reusable software components need expressive specifications. This paper outlines a rigorous foundation to model-based contracts, a method to equip classes with strong contracts that support accurate design, implementation, and formal verification of reusable components. Model-based contracts conservatively extend the classic Design by Contract with a notion of model, which underpins the precise definitions of such concepts as abstract equivalence and specification completeness. Experiments applying model-based contracts to libraries of data structures suggest that the method enables accurate specification of practical software

    Formal specification with JML

    Get PDF
    This text is a general, self contained, and tool independent introduction into the Java Modeling Language, JML. It is a preview of a chapter planned to appear in a book about the KeY approach and tool to the verification of Java software. JML is the dominating starting point of KeY style Java verification. However, this paper does not in any way depend on any tool nor verification methodology. Other chapters in this book talk about the usage of JML in KeY style verification. Here, we only refer to KeY in very few places, without relying on it. This introduction is written for all readers with an interest in formal specification of software in general, and anyone who wants to learn about the JML approach to specification in particular. The authors appreciate any comments or questions that help to improve the text

    The Mechanics of Embodiment: A Dialogue on Embodiment and Computational Modeling

    Get PDF
    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamouring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensory-motor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialogue between two fictional characters: Ernest, the �experimenter�, and Mary, the �computational modeller�. The dialogue consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modelling

    Preliminary Design of JML: A Behavioral Interface Specification Language for Java

    Get PDF
    JML is a behavioral interface specification language tailored to Java(TM). Besides pre- and postconditions, it also allows assertions to be intermixed with Java code; these aid verification and debugging. JML is designed to be used by working software engineers; to do this it follows Eiffel in using Java expressions in assertions. JML combines this idea from Eiffel with the model-based approach to specifications, typified by VDM and Larch, which results in greater expressiveness. Other expressiveness advantages over Eiffel include quantifiers, specification-only variables, and frame conditions. This paper discusses the goals of JML, the overall approach, and describes the basic features of the language through examples. It is intended for readers who have some familiarity with both Java and behavioral specification using pre- and postconditions
    corecore